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ABSTRACT
The seismic noise recorded by the Interior Exploration using Seismic Investigations,
Geodesy, and Heat Transport (InSight) seismometer (Seismic Experiment for Interior
Structure [SEIS]) has a strong daily quasi-periodicity and numerous transient microevents,
associatedmostly with an activeMartian environment with wind bursts, pressure drops, in
addition to thermally induced lander and instrument cracks. That noise is far from the
Earth’s microseismic noise. Quantifying the importance of nonstochasticity and identifying
these microevents is mandatory for improving continuous data quality and noise analysis
techniques, including autocorrelation. Cataloging these events has so far been made with
specific algorithms and operator’s visual inspection. We investigate here the continuous
data with an unsupervised deep-learning approach built on a deep scattering network.
This leads to the successful detection and clustering of these microevents as well as better
determination of daily cycles associated with changes in the intensity and color of the
background noise. We first provide a description of our approach, and then present
the learned clusters followed by a study of their origin and associated physical phenom-
ena. We show that the clustering is robust over several Martian days, showing distinct
types of glitches that repeat at a rate of several tens per sol with stable time differences.
We show that the clustering and detection efficiency for pressure drops and glitches is
comparable to or better than manual or targeted detection techniques proposed to date,
noticeably with an unsupervised approach. Finally, we discuss the origin of other clusters
found, especially glitch sequences with stable time offsets that might generate artifacts in
autocorrelation analyses. We conclude with presenting the potential of unsupervised
learning for long-term space mission operations, in particular, for geophysical and envi-
ronmental observatories.

KEY POINTS
• We apply unsupervised deep learning based on the scat-

tering network to detect microevents in the InSight data.
• We track and cluster transient signals in both SEIS seis-

mometer and pressure records.
• The Deep Scattering Network DSN identifies in seismic

records nonstochastic glitches repetitions that can improve
the SEIS data interpretations.

Supplemental Material

INTRODUCTION
The Interior Exploration using Seismic Investigations, Geodesy
and Heat Transport (InSight) landed on Mars on 26 November
2018 (Banerdt et al., 2020), and deployed the Seismic
Experiment for Interior Structure (SEIS) experiment on the
ground (Lognonné et al., 2019). It records the Martian pressure
with the Auxiliary Payload Sensors Suite (APSS) experiment
(Banfield et al., 2018, 2020a), and since February 2019, ground

acceleration with SEIS almost continuously, detecting mars-
quakes (Giardini et al., 2020; Lognonné et al., 2020) and tran-
sient atmospheric signals (Garcia et al., 2020; Kenda et al.,
2020; Charalambous et al., 2021).

The SEIS background noise (Lognonné et al., 2020;
Stutzmann et al., 2021) is much lower in amplitude than the
Earth’s seismic noise (Peterson, 1993). Because of the surface
installation, atmospheric activity and surface temperature drive
the noise fluctuations (Lognonné et al., 2020; Charalambous
et al., 2021), leading to a strong daily trend and a significant
nonstochastic character. This is, for example, illustrated by
the relation in occurrences in time of the transient thermally
induced microtilts (also denoted glitches) with the SEIS
recorded temperature, as already observed by Scholz et al.
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(2020). When not corrected, these glitches lead to artifacts in
autocorrelation analyses, as demonstrated by Kim et al.
(2021). During daytime, other frequent transients events are
associated with pressure drops, analyzed and cataloged by
Lorenz et al. (2020) and Spiga et al. (2021) from pressure data
analysis and modeled by Lognonné et al. (2020), Banerdt et al.
(2020), and Kenda et al. (2020). Mostly above 1 Hz, lander shak-
ing events are also frequent, especially at lander resonance
frequencies (Ceylan et al., 2021).

All the required cataloging efforts in identifying these tran-
sient signals are time consuming, which might be critical for
long-duration operations. In addition, the methods developed
by Scholz et al. (2020) for glitches cannot identify easily non-
stochastic patterns in the signal, such as sequences of glitches
with stable offset time. Furthermore, the nonstochasticity can
also be related to predictable changes in the color of the noise
spectrum, such as those related to the daily variation of the
atmospheric turbulences, even if not associated with observ-
able transient signals in the time domain.

This study aims to identify families of signals in the con-
tinuous data recorded by SEIS to better understand the struc-
ture of the continuous data and its nonstochasticity using
artificial intelligence. The analysis presented, here, does
not focus on the detection of rare (on the time scale of a
sol) seismic events (Clinton et al., 2021), but investigates
instrument or local (e.g., lander or instrument-related or
environmental) sources, which might either generate single
or repeating signals that are similar enough to be clustered.
The associated clustering problem (Goodfellow et al., 2016)
fits in an unsupervised learning framework in a feature space
generated with a deep scattering network (DSN) that has its
roots in time–frequency analysis. The DSN (Andén and
Mallat, 2014) has been made learnable, which allows our
analysis to be fully adapted to unknown conditions, including
those of Mars. The original algorithm was developed by
Seydoux et al. (2020) for the Earth continuous seismic data.
We modified it to detect and classify the transient signals in
the very broadband (VBB)/SEIS continuous data (InSight
Mars SEIS Data Service, 2019) or APSS pressure data
(Mora, 2019). This work is the first study to apply deep learn-
ing on Martian seismic. During the course of this work,
another study was made with atmospheric Curiosity data
(Priyadarshini and Puri, 2021).

In this article, we first introduce the deep-learning strategy
developed and applied on the Earth. We then applied it to SEIS
and pressure data. For SEIS, two analyses are made—the first
to identify how much the signal can be clustered and the sec-
ond to detect repeating signals in the noise. For pressure, only
the first step is made.

Finally, we compare the timing of the cluster’s events with
those reported in the already published catalog (Scholz et al.,
2020; Ceylan et al., 2021; Lorenz et al., 2021; Spiga et al., 2021).
For single events such as glitches and pressure drops, deep

learning provides comparable (for glitches) or better (for pres-
sure drops) detection results than the already published meth-
ods. This comparison depends of course on the various
thresholds used by all techniques. More importantly, we show
that unsupervised machine learning detects nonstochastics fea-
tures, such as repeating series of glitches, and clusters the noise
based on its color (or spectrum). This provides important feed-
back on the noise structure and a critical check on assumptions
in scientific analysis, such as autocorrelations of the continu-
ous data (Deng and Levander, 2020; Kim et al., 2021; Schimmel
et al., 2021). This will also help better understand the impact of
the atmospheric turbulence on SEIS data.

METHOD
Machine learning in seismology
Machine learning is a powerful approach for statistical data
analysis and has had wide-ranging success in various fields
(Jordan and Mitchell, 2015) such as seismology (e.g., Jia and
Ma, 2017; Kong et al., 2018; Malfante et al., 2018; Hibert et al.,
2019; Seydoux et al., 2020; Falcin et al., 2021). Here, we distin-
guish supervised from unsupervised approaches. In a supervised
approach, the algorithm learns the mapping between data sam-
ples and labels from labeled, training data.

Lack of labeled data requires unsupervised strategies.
Cluster analysis is a common strategy used in unsupervised
learning (e.g., Géron, 2019). Even if depending on hyperpara-
meter values, unsupervised learning performs an information-
based data analysis (Bergen and Beroza, 2018) not relying on
former, human-based labeling of data. It can also reveal new
classes, which is out of reach for supervised algorithms trained
to recognize already-known classes. In the present study, we
focus on noise, adopt the unsupervised strategy, and compare
its efficiency on SEIS data with the existing catalogs. For future
studies focusing on marsquakes, supervised learning (employ-
ing the recurrent scattering neural network) will be tested to
automate the manual task performed by the Mars Quake
Service (Clinton et al., 2018) and possibly detect more events.

Selecting a relevant and stable representation of waveforms
(or waveform features) is critical for the success of clustering,
because the temporal representation of waveforms is sensitive
to small deformations (Bruna and Mallat, 2013; Andén and
Mallat, 2014). In seismic applications, the features have com-
monly been handcrafted (signal energy, spectral content; see,
e.g., Malfante et al., 2018), which implies having a priori
knowledge of the data content. Here, we learn the relevant fea-
tures, which is known as representation learning. The repre-
sentation is formed by a learnable DSN.

Deep scattering network
A DSN extracts stable representations of continuous data. This
network is built layerwise from wavelet transforms (convolu-
tions), taking moduli and pooling, that is, decimation with
prior low-pass filtering (see Fig. 1 and Seydoux et al., 2020).
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Modulus of the convolution jx � φj of a time series x(t) and
a wavelet φ�t� defines the time-series energy near the center
frequency of this wavelet as a function of time. A wavelet trans-
form is the convolution of a time series with a filter bank with
various center frequencies (Fig. 1a). The wavelets of a given
bank φλ�t� are dilated versions of a mother wavelet φ0�t� with
a scaling factor λ such as φλ�t� � λφ0�tλ�. The frequency range
of a wavelet transform is controlled by the number of octaves J,
and the frequency resolution is given by the number of
wavelets per octave Q. The total number of wavelets in a bank
is F = JQ.

A wavelet transform defines a time–frequency representa-
tion of a signal called a scalogram, as illustrated from a SEIS
record in Figure 1a. The evolution of modulating signals or
longer trends in the envelopes cannot be captured with a single
wavelet transform when several orders of magnitude exist
between the time scales, as usually observed in seismology.
On the Earth, for instance, earthquakes often produce signals
with sharp onsets and broad frequency contents. However, in
the same frequency range, we can also observe nonvolcanic
tremor signals without clear onsets (e.g., Obara, 2002).
Similar observations are made on Mars for the seismic noise
recorded by SEIS: In addition, we observe both localized pres-
sure drop signals and continuous wind-generated noise in
equal frequency bands (Kenda et al., 2020; Lognonné et al.,
2020; Charalambous et al., 2021). This motivates a design of
a DSN with three layers (Fig. 1a). Each layer outputs scattering
coefficients (see Fig. 1a, right), the order corresponding with
the layer index. The scattering coefficients from all orders

define the set of features used later in our clustering procedure.
The invariance properties of this network promote robust clus-
tering. The dimension of 1D data through the scattering net-
work is summarized in Table 1. The time-pooling factor is
adapted at each layer to allow for concatenating the scattering
coefficients at all layers.

Figure 1. (a) Clustering continuous seismograms with deep scattering net-
work (DSN) and Gaussian mixture model (GMM). DSN—the modulus of
convolution between the input seismogram and a first learnable wavelet
bank—defines the first-order scalogram. The average pooling in the time
dimension of this scalogram provides the first-order scattering coefficients.
The second-order scalograms are obtained from each scale of the first-order
scalogram, similarly leading to the second-order scattering coefficients with
average pooling (Andén and Mallat, 2014). This procedure can be per-
formed at higher orders, and the collection of all-orders scattering coeffi-
cients define the scattering representation of the seismic data. The analysis
of multiple channels is done by the concatenation of the scattering coef-
ficients obtained for each channel. (b) Image of the SEIS instrument as
installed on the ground and protected by the Wind and Thermal Shield,
together with the tether joining the sensor to the lander. (c) Clustering
workflow as defined in Seydoux et al. (2020): the scattering coefficients are
extracted from the continuous multicomponent seismograms with a DSN
(illustrated in panel (c)). A low-dimensional representation (latent space) of
the continuous seismic data is obtained from the first few principal com-
ponents of the scattering coefficients. The clustering is performed onto the
data projected in the latent space with a GMM, allowing to assign a cluster
to each segment of signal. The overall strategy optimizes the mother
wavelets of each DSN layers to minimize the GMM clustering loss. The color
version of this figure is available only in the electronic edition.

2966 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 111 Number 6 December 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/111/6/2964/5475350/bssa-2021095.1.pdf
by CNRS_INSU user
on 10 February 2022



The three-axis SEIS data are individually transformed, and
the scattering coefficients obtained from each component are
concatenated to form a set of features for the three components
within different time windows. The number of scattering coef-
ficients obtained from a single time window can be significant
depending on the number of wavelet filters and scattering
orders. This full scattering representation is highly redundant,
because the input signals may share similar properties at differ-
ent frequencies, so there is no need to keep the entire scattering
representation. For this reason, we perform a dimension reduc-
tion of the scattering coefficients with a projection on the first
few principal components (Fig. 1c), corresponding to a low-
dimensional representation (or latent space) for which the
clustering is applied.

Clustering with Gaussian mixture models
The overall clustering procedure is depicted in Figure 1a. Once
transformed into a low-dimensional latent space, the different
time windows of seismic data are clustered with a Gaussian
mixture model (GMM). The different groups of time windows
are ultimately interpreted as clusters of events. As described in
Seydoux et al. (2020), the mother wavelets at each scattering
layer are learned by minimizing the clustering loss of the
GMM. Learning the wavelets is indicated by the backpropaga-
tion arrow in Figure 1c.

The learning procedure involves two steps. First, we define
the value and derivative of the mother wavelet on K knots at
each layer of the scattering network. The full wavelet is then
interpolated with Hermite cubic splines. The number of knots
is low to minimize the number of parameters to learn (for
instance, with a wavelet defined on five knots, we need to learn
10 parameters; seven for both amplitude and derivative). A
three-layer scattering network with wavelets defined on five

knots involves 30 learnable parameters. In the second step,
we learn the three mother wavelets that maximize the cluster-
ing quality. Following Seydoux et al. (2020), we use the ADAM
stochastic gradient descent to incrementally converge toward
an optimal solution, backpropagating the GMM clustering
loss. To prevent trivial solutions from being learned (e.g.,
zero-valued wavelets), we include a partial reconstruction loss
to preserve the input signal’s energy across the network. For
each layer, the reconstruction loss is the quadratic error
between the input signal and the partially reconstructed signal
(see Seydoux et al., 2020, for more formal details).

The DSN can be seen as a particular, regularized convolu-
tional neural network (CNN), whereas the output is generated
layerwise. In addition, the DSN filters are reminiscent of physi-
cally meaningful signal processing, because these involve
multiple time and frequency analyses of the input data; this
is illustrated in Table 1. This is an advantage over traditional
CNNs, which was demonstrated in Andén and Mallat (2014)
and Oyallon et al. (2017).

Hyperparameters
The overall clustering strategy involves several hyperpara-
meters that define the network architecture, control the time
and frequency scales and temporal resolution of the analysis
based on the frequency content of the tracked event, and
the maximum number of clusters found by the procedure.
Here, we define these parameters:

• The number of scattering layers L: Andén and Mallat
(2014) suggest that two layers are sufficient for audio signals,
especially with a broad frequency spectrum. In our case, we
use three layers, because the signals of interest span a narrow
frequency band, with the second and third layers designed to

TABLE 1
Computational Dimensions of the Scattering Coefficients

Layer Description Dimension
After Pooling Dimension
(Scattering Coefficient) Jℓ Qℓ

f ℓ (Nyquist)
(Hz) Fℓ � JℓQℓ

−1 Raw data (100 s, 20
samples per second)

3 channels × 2000 samples N/A N/A N/A 10 N/A

0 Decimated data
(100 s, 10 samples
per second)

3 channels × 1000 samples N/A N/A N/A 5 N/A

1 First layer 3 channels × F1 filters × 512 samples 3 × F1 × 8 6 6 1.25 36
2 Second layer 3 channels × (F1 × F2) filters × 128 samples 3 ×F1 × F2× 8 7 2 0.312 14
3 Third layer 3 channels × (F1 × F2 × F3) filters × 32

samples
3 × F1 × F2 × F3 × 8 7 2 0.079 14

Raw 20 samples per second data (layer −1) are first decimated to 10 samples per second for faster computation. A data window of 100 s from three channels contains 1000
samples per channel at the 0 layer (input layer). After convolving the signal with the F1 filters of the first wavelet bank, the signal is decimated down to 512 samples. Then,
successive decimations by four with a fourth-order Butterworth antialias filter are made from one layer to the next one, ending up to 512, 128, and 32 samples for layers 1, 2, and
3, respectively. Finally, we obtain the scattering coefficients with an adapted pooling operation performed on all layers at once. The pooling factor is larger at first layers (from 512
to 8 samples) and lower at last layers (from 32 to 8 samples). We finally end up with a number of eight samples in the time dimension, corresponding to a time resolution of 12.5 s
in our case. Note that the dimension of the scattering coefficients grows exponentially with the number of filters per layers (Fℓ) and the number of layers ℓ. The terms Jℓ,Qℓ, and f ℓ
defined the network hyperparameters used in this study, and defined in both the Hyperparameters and the Comparison between SEIS Glitch Clusters and Glitch Catalog sections.
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focus on the envelope oscillations at different frequencies
(see the Deep Scattering Network section).

• The decimation factor: The main idea of the DSN is to cap-
ture the frequency content of the signals’ envelope at differ-
ent frequencies. For seismic data, we assume the envelopes
vary smoothly with respect to time. Thus, we decimate the
output of the different wavelet transforms at all layers by a
given decimation factor. As a consequence, the temporal
sampling of each layer reduces as depth increases (see
Table 1).

• The number of octaves Jℓ: Determines the frequency range
of the wavelet filter bank at layer ℓ, from ωmin � π2−Jℓ to
ωmax � π (in radians). In the first layer, J1 defines the
frequencies analyzed in the seismic data. The parameters
J2 and J3 control the ranges of time scales seen in the signal
envelopes.

• The number of wavelets per octave Qℓ: Controls the fre-
quency resolution of each scalogram. Following Seydoux
et al. (2020), we use a large Q in the first layer (dense rep-
resentation) and a low Q in deeper layers (sparse represen-
tation) to maximize the separation between dissimilar
events.

• The number of wavelet knots K: Controls the number of
points to interpolate the wavelets and, therefore, the poten-
tial complexity in wavelet shape. Selecting more knots leads
to a better description of the signal at reduced computational
efficiency. To approximate standard mother wavelets such as
the Gabor wavelet at affordable computation cost, we use K
= 5 knots.

• The latent space dimension: Controls the number of com-
ponents to keep in the dimension reduction with principal
component analysis (PCA). There is a trade-off to consider
between removing too much information (few principal
components) and degrading the GMM clustering quality
(too many principal components). Judging this trade-off,
in the present study, we selected six components to perform
the analysis.

APPLICATION TO SEIS CONTINOUS DATA
We focus on the continuous 20 samples per second VEL chan-
nels of the oblique VBB components U, V, and W. The two top
panels of Figure 2 show one sol (184) of VBB U raw data and
its spectrogram. Sols are Martian days (about 24 hr and 40
min) and are numbered since the landing date. A local mean
solar time (LMST) hour is 1/24 of a sol.

As already described by Lognonné et al. (2020), Giardini
et al. (2020), Stutzmann et al. (2021), and Ceylan et al.
(2021), SEIS signals contain highly repetitive patterns in both
noise amplitude and frequency of events (that we define here as
short duration bursts of energy) from one sol to another.
Because of this sol periodicity, we can expect to cover with
a limited number of all sols patterns embedded in the noise,

which will need only a few weeks for signal training. The first
is from 3 to 11 June 2019, coinciding with the start of continu-
ous 20 samples per second data. In addition, we selected three
other weeks in 2019 (12–18 June, 23–30 June, and 7–14 July) to
check that our unsupervised deep-learning algorithm (see the
Deep Scattering Network section) can cluster the noise struc-
ture regardless of the duration and epoch of the time period. As
clustering results are similar for the four weeks, we show only
the results for the first week.

To interpret the clustering results, we have also used the
temperature data from SEIS and the temperature and pressure
data from the APSS experiment (Banfield et al., 2018). See fur-
ther details in Data and Resources.

Data preprocessing and learning convergence
Minimal preprocessing was performed on the continuous data,
limited to (1) a decimation by two due to available graphic
processing unit memory limitations and (2) a 0.001 Hz
high-pass filtering to remove the very-long-period thermal

Figure 2. Cluster occurrence frequency on sol 184. The first panel from the
top shows the raw very broadband (VBB) U data for Martian sol 184. The
second panel is the associated spectrogram, computed with a window of
102.4 s, illustrating the evolution of the frequency content. The other panels
show the histograms of cluster activities. They give the number of events
occurring in an 11 min window as a function of Local Mean Solar Time
(LMST). Numbers on the top right of each panel are the total number of
events for that sol. The color version of this figure is available only in the
electronic edition.
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signal. Therefore, all data are expressed in digital unit, which
correspond to about 1:25 × 10−11 m=s at 1 Hz. Our various
tests confirmed that the resulting 0.001–5 Hz 10 samples
per second three-axis continuous was sufficient for the cluster-
ing task.

Table 1 summarizes the choice of hyperparameters and
dimension of the feature vectors used in our clustering
approach. The continuous data were segmented in 100 s dura-
tion intervals viewed as samples without overlap due to
processing limitation. Even if DSN has been able to track
and cluster events close from the window’s borders, future
optimization can easily be made with overlapping.

The most frequent events in the data (such as those gener-
ated by pressure drops or glitches) do not need many interpo-
lation points for their reconstruction by the mother wavelets in
each layer. As mentioned before, we set K to five and the latent
space dimension to six. Jℓ, Qℓ values, and Nyquist frequencies,
determining the bandwidth of each layer, are provided in
Table 1.

Up to 9000 iterations (or epochs) were possible for the
learning, but a stopping criterion after 2000 epochs was intro-
duced, based on training’s track and reconstruction losses and
with awareness of the plateau phenomenon (Seydoux et al.,
2020), found generally in the first 500 epochs. We tested
our DSN with different depths and concluded that three layers
were sufficient to extract information from noisy data and
guarantee stability during learning. Although a maximum of
15 clusters was allowed for the clustering, the clustering con-
verged toward the smaller number of nine clusters. This con-
vergence to nine clusters was found for different maxima tested
(from 10 to 20) and was also found for training on either one
week of data or only one sol.

Clusters and centroid for one sol
Figure 2 shows how the 885 100 s data samples cluster during
sol 184—one of the sol of the week-learning period. It pro-
vides the number of data samples per hour for each cluster as
a function of the LMST at the InSight location. Cluster’s
occurrence frequency is described in Figure 2. For example,
cluster 0 is the most frequent cluster with 226 samples found,
whereas cluster 8 is the least frequent one with 24 samples.
This already shows that all clusters are associated with spe-
cific LMST and are, therefore, thermally triggered or associ-
ated with specific temperature and pressure conditions.
Clusters 0, 1, and 2 occur during day time, clusters 4, 6, 7,
and 8 during early night, and clusters 3 and 5 during late
night. This will be confirmed by results for one week, pre-
sented later in the discussion and illustrated in the supple-
mental material to this article.

These data samples are clusterized either due to similar
events occurring in the 100 s window or due to similar noise
properties (e.g., level or color) in these windows. Before con-
tinuing the interpretation, we first briefly review the types of

events already identified on SEIS data. These can be divided
into two families:

• Frequent events: These appear every sol and are either asso-
ciated with the Martian environment, the lander, and/or the
SEIS instrument. First examples are the pressure drops gen-
erating ground deformations. See Banerdt et al. (2020),
Lognonné et al. (2020), and Kenda et al. (2020) for their sig-
nal on SEIS and Banfield et al. (2020a) for the pressure signal
on APSS. Spiga et al. (2021) and Lorenz et al. (2020) cata-
loged them, based on the pressure signal shape. Other wind
bursts examples appear through lander vibrations. See
among other (Ceylan et al., 2021; Charalambous et al., 2021).
Finally, due to thermoelastic stress release and also to pres-
sure drops, glitches are very frequent on all SEIS records,
with a visual repeatability sol by sol. See Lognonné et al.
(2020) and Scholz et al. (2020) for more details. They gen-
erate microtilts, leading to high-amplitude instrument
responses in the raw data.

• Rare events: For our analysis, rare events are the seismic
events (Giardini et al., 2020). With a rate of a few events
per sol (Clinton et al., 2021), they are much less frequent than
those listed earlier. In the framework of this article, these will
not be captured by clustering. Furthermore, for all the weeks
analyzed, no correlation between reported P or S arrival times
(as given by InSight Marsquake Service, 2020) and any clus-
ter’s event origin time was found. The frequency of event clus-
ters during the seismic events was similar to the one found at
the same LMST but for sols without events.

To better quantify common waveform similarities between
samples of the same cluster, we extracted for each cluster their
centroid waveform and compared them to the best similarity
(BS) waveform. The later is by definition the closest to the
covariance ellipsoid’s center in the scattering manifold, the dis-
tance corresponding in the machine-learning vocabulary to the
similarity coefficient. For a given cluster, the centroid wave-
form is the waveform stack of all events of the cluster and
is obtained as follows. First, all events from the cluster are
aligned with the BS waveform and sorted with increasing cor-
relation coefficient. See Figure 3 for cluster 6. Alignment is
made by maximum correlation time lag, and correlation is
computed in a 100 s window. The weighted stack is then
obtained from the aligned waveforms as follows:

EQ-TARGET;temp:intralink-;df1;308;174X�t� �
XN

i�0

ωixi�t − τi�; �1�

in which ωi is the correlation weight, and τi is the correlation
time lag of the event i with respect to the reference.

For nine clusters, centroid waveforms are shown in
Figure 4, whereas the data waveforms are shown in Section
1 of the supplemental material (Figs. S1–S9, respectively).
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The BS waveforms for these nine clusters are provided in
Figure S10 of Section 1 of the supplemental material. For each
cluster, the correlation and similarity values between the BS
and centroid waveforms are shown in Figure 5, and support
a classification in three families, listed A, B, and C.

Clusters A (numbered 6, 7, 8) are characterized by both a
high correlation and a high similarity between the BS wave-
form and the centroid. Although having no significant similar-
ity, the B-type centroids (numbered 3, 4, 5) conserve a high
correlation with the BS waveform for clusters 4 and 5.
Correlation drops to about 0.5 for cluster 3. Clusters C are
those numbered 0, 1, 2. They have a very low correlation
but with a significant similarity for 1 and 2.

Both centroids and BS waveforms of families A and B are
characterized by VBB glitches, as identified by Lognonné et al.
(2020) and Scholz et al. (2020). They appear on these raw data
as the instrument response to an acceleration step. The glitches
are less clear for cluster 3 BS waveform and appear mostly on
the corresponding centroid. The centroids and BS waveforms
of family C are all occurring during windy activity, either dur-
ing the day regime for clusters 1 and 2 with their larger spectral
amplitudes or in the second part of the night, continuing to the
morning for cluster 0. We will see later that these clusters are
associated either with pressure drops or wind burst, generating
in both cases SEIS signal.

The clustering is, however,
not made only on the wave-
form similarities, but also on
their spectral properties,
including spectra color and
ratio between high-frequency
and low-frequency amplitudes.
This explains why these fami-
lies have several clusters and
not only one, and is illustrated
by the spectra of the nine
centroid waveforms shown in
Figure 6 for the V component
and in Section 1 of the
supplemental material (Fig.
S11) for the associated BS
spectra.

The large differences in the
ratio between low-frequency
and high-frequency amplitudes
for families A and B confirm
differences between five clus-
ters. For example, centroid’s
spectra of clusters 3, 4, and 7
are comparable above 1 Hz
but have growing amplitudes
between 0.1 and 0.2 Hz,
whereas the high-frequency

amplitudes and color of centroid’s spectra 6, 8, and 5 are
red, white, and blue, respectively. Likely, the clustering is also
sensitive to the 1 Hz tick noise (and associated 2–3 Hz har-
monics) that acts as an amplitude reference. While being an
artifact related to the interference of the house keeping data
inrush current on the VBB feedback analog signal, its ampli-
tude is indeed stable over time (Ceylan et al., 2021). Another
interesting feature is the 2.4 Hz resonance peak, proposed as a
ground resonance by Giardini et al. (2020). It has a very com-
parable amplitude for the three low-noise clusters (3, 4, 7),
which confirms the stability of its amplitude. Clusters 3
and 4–8 all occur during the night. But clusters 5 and 6 have
a much larger noise level, covering the 2.4 Hz resonance,
whereas cluster 8 has the highest background noise of both
families A and B. For the family C, spectra are on the other
hand much more comparable after scaling. However, the 1 Hz
tick noise allows to understand that clusters 0, 2, 1 are asso-
ciated with growing noise level, the tick noise being for exam-
ple observed on both the BS waveform and the centroid for
cluster 0, and absent for cluster 1. We will discuss this family
later, in more detail, after having compared these clusters
with pressure drop statistics.

Other VBB components provide similar results (Fig. S12
for W and Fig. S13 for U) but with amplitude differences of
the 1, 2, 3, and 2.4 Hz peaks.

Figure 3. Cluster 6 events aligned on their largest amplitude for the three components. Starting from left to right
panels: U, V, and W. The top traces are the reference waveforms and the ranking from top to bottom corresponds to
decreasing correlation. All waveforms are normalized with respect to their maximum amplitude, and event start
time is at t = 0 s. Correlation is defined as the mean value of the three correlations—each obtained for each axis,
and it is shown in the right panel as a circle. The three values of correlations for U, V, and W are also shown as
colored dots on this right panel, together with similarity with a red stars, plotted to the power 1/6 due to the six
dimensions of the manifold. As clustering is done with a mixture of noise level and waveform similarities, cor-
relations and similarities are not correlated. The color version of this figure is available only in the electronic edition.
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Clustering stability
The stability of the clustering is tested with training on
different sols selected from the middle of northern spring to
the middle of northern summer. Between 8 and 10 clusters
are commonly identified. Four clusters (1, 2, 3, 7) are stable
over time, representing families A, B, and C for clusters 7,
3, and 1–2, respectively. A similarity larger than 95% between
events from different sols but from that same stable cluster is
found. The centroid spectra are shown in Figure 7 for all
these sols.

Figure 4. Centroid waveforms of the nine clusters. Panels (a), (b), (c), (d), (e),
(f), (g), (h) and (i) show cluster 0, 1, 2, 3, 4, 5, 6, 7 and 8, respectively. For
each cluster, the waveforms of the three components U, V, and W are
plotted together with the corresponding peak to peak percentage computed
with respect to the component with the maximum amplitude. This provides
the relative amplitude of the three components—a feature taken into
account in the clustering process. Amplitudes are normalized by the mean-
squared norm L2 applied on the three axes. The cluster event starts at 0 s
(centered using the same procedure explained in Fig. 3). The color version of
this figure is available only in the electronic edition.

Volume 111 Number 6 December 2021 www.bssaonline.org Bulletin of the Seismological Society of America • 2971

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/111/6/2964/5475350/bssa-2021095.1.pdf
by CNRS_INSU user
on 10 February 2022



The two clusters with the lowest spectral amplitudes have
clear 1 Hz (and overtones) tick noise peaks plus the 2.4 Hz
resonance, and correspond to clusters 7 and 3 from
Figures 4 and 6. As already said, they are associated with
glitches occurring during the early and late night, respectively,

and therefore with decreasing cooling rate, which might
explain the smaller glitch amplitude of cluster 3 as compared
with 7, as illustrated by the almost 20 dB differences in
Figure 6. The two other clusters are those with the largest spec-
tral amplitudes, have large excitation levels for the lander res-
onances above 3 Hz, and correspond to clusters 1 and 2 from
Figures 4 and 6. These two clusters appear during the day or
the second half of the night, respectively. We will later see that
cluster 1 is associated with pressure drops, whereas cluster 2 is
associated with bursts of energy generating ringing associated
with the lander resonances. This ringing is also found when
examining the spectrograms of individual events.

These clustering stabilities from sol to sol are likely related
to both the waveform and spectra similarities, including for
spectra resonances. The invariance properties of the DSN con-
tribute to these stabilities.

COMPARISON BETWEEN SEIS GLITCH CLUSTERS
AND GLITCH CATALOG
Families A and B are characterized by powerful (for clusters
4–8) and weak (for cluster 3) glitches. Glitches from clusters
4 and 8 are dominating the signal in the time domain (Fig. 2).
During sol 184, they sum up to 364 events. These glitches are
frequent enough to occur during marsquakes and perturb the
recorded marsquakes signals (Lognonné et al., 2020).

Cataloging the glitches and possibly removing them was an
early effort (Lognonné et al., 2020) and is detailed by Scholz
et al. (2020). We compare here the detection timing of the DSN
with those provided by the more classical glitch detection tech-
niques. On sol 184 (3 June 2019), the number of glitches

reported in these catalogs
ranges from 50 to more than
200, depending on the detec-
tion algorithm and threshold
parameters, and we use for
comparison a catalog of 127
glitches obtained for a middle
threshold value (see folder
GlitchListing of the e-supple-
mental zip file for the associ-
ated listing and further details
in Scholz et al., 2020). The
histogram of the results is
shown in Figure 8. The zero-
centered distribution confirms
the matching between the two
approaches. In fact, DSN
retrieves 117 glitches from the
catalog out of 127 with a tim-
ing error smaller than 2 s,
which corresponds to 92% of
the cataloged glitches and
therefore 8% of false negative.

Figure 5. Cluster’s centroid similarity distribution in function of its correlation
with the best similarity (BS) event for each cluster. This figure highlights
three families A, B, and C. Family A in red: during the clustering procedure,
the waveform shape is the dominant feature. Family B in green: the
background noise is the dominant feature during the clustering procedure. It
is more related to the response of the external Martian sources in the seismic
data, such as the background noise generated by pressure drops (clusters 0
and 1) or wind burst (cluster 3). Family C in blue: the waveform is not the
only main feature used in the clustering (e.g., the background noise, the
relative amplitude, and so on). The color version of this figure is available
only in the electronic edition.

Figure 6. Amplitude spectral density of the nine cluster centroid waveforms for the V component. The color version of
this figure is available only in the electronic edition.
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When looking on the similarity coefficient, 170 of these events
have a very low similarity coefficient, smaller than 10−8, and
can therefore be either false detection or weak detection.
The total of glitches detected by DSN with high similarity is
therefore 194 (152% of the cataloged glitches). These addi-
tional events are likely glitches with amplitude lower than
the catalog threshold.

Cluster polarizations
Polarization provides additional information on the origin of
clusters, and we determined the azimuth and dip for all events
as follows. We first high-pass filter all components with a
0.1 Hz cutoff. We then normalized all components with the
transfer function of the U component (a correction made
by the ratio of the U transfer function with the transfer func-
tion of the component) and then rotated the data to obtain the
N, E, and Z components (based on SEED dataless informa-
tion). The event’s azimuth and dip are then computed using
the Ppol software (Fontaine et al., 2009; Scholz, 2017). For
all clusters except 1 and 3, we use a ±5 s time window around
the event center, as defined by the correlation with the cent-
roid. For clusters 3 and 1, a window of ±40 and ±20 s, respec-
tively, is used.

Figure 9 shows the back azimuths and dips of all events
from clusters 1, 3, and 8, whereas those of the other clusters
are only discussed later. Clusters 0 and 1 have subvertical dip,
as observed by Kenda et al. (2020) for pressure drops. Cluster 2
has a horizontal dip but with a relatively large azimuth scatter,
even if some clustering toward north is observed with large
amplitude.We retrieve here observations from Stutzmann et al.
(2021), Charalambous et al. (2021), and an interpretation
based on wind-induced lander noise. Cluster 8 is typical for
SEIS glitches (such as clusters 4–8). Its dip departure from
horizontal is very small (as for cluster 7), and its azimuth
points to the north (as for clusters 4, 6, and 7) and seems
related to longitudinal microtilts with respect to the tether.
The not shown cluster 5 has on its side an azimuth close to
orthogonal from the Load Shunt Assembly (LSA)/tether in line
with their peak occurrence during the cooling of the early night

Figure 7. Stable cluster spectrum. Each plot shows the centroid spectra of the
clusters 1, 2, 3, and 7, as obtained from learning on the following Martian
sols: sol 193, sol 203, sol 213, sol 223, sol 234, sol 243, sol 253, sol 363, sol
372, and sol 393. These cluster’s events have 95% similarity between each
others. The color version of this figure is available only in the electronic edition.
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(Fig. 2), whereas those with smaller amplitude have still a sub-
horizontal dip. Cluster 3 has more vertical component but a
relatively stable azimuth toward the lander and correspond
to either low-amplitude glitches or internal SEIS glitches,
known as source of vertical signal (Scholz et al., 2020).

CORRELATION OF SEIS CLUSTERS WITH
TEMPERATURE AND SOL QUASI-PERIODICITY
Both the dependency on LMST and the clustering stability over
sols suggest that our clusters are driven by daily temperature
variations. This is confirmed by Figure 10, which shows for five
days, the number of events per hour together with the outside
temperature, the scientific temperature, and the VBB temper-
ature. The latter two have a delay related to 3 and 5.5 hr time
constant of the VBB enclosure and wind thermal shield
(Lognonné et al., 2019). None of these temperature data were
input of the learning.

First, we discuss the correlation of occurrence rate with
temperature starting from midnight (0:00 LMST). During the
nighttime cooling and associated decrease of atmospheric tem-
perature, cluster 3 (green) is dominant, with a low-noise level
(Fig. 6) and a clear 2.4 Hz resonance. Glitches from cluster 5
are also present in background, especially when noise levels
are larger.

Cluster 0 (blue), with a much larger noise above 1 Hz, hiding
the 2.4 Hz resonance (Fig. 6), increases in intensity when night
winds rise up; and this cluster replaces cluster 3 and becomes the

most abundant in the early
morning. Cluster 1 (orange)
starts when the temperature
increases after sunrise and
reaches its maximum occur-
rence rate in the late morning.
During the daytime’s atmos-
pheric activity, this cluster
dominates. The occurrence rate
of cluster 2 (red) is increasing in
the late morning and has a pla-
teau between 12:00 and 17:00
LMST. Clusters 0, 2, and 1 have
increasing background noise
levels (Fig. 6). This behavior is
related to afternoon wind
bursts, the signature of which
is also found in the large varia-
tions in atmospheric tempera-
ture. Clusters 0 and 1 have
both long-period events and
short-period events. They seem
to be associated with the con-
junction of pressure drops and
wind burst. Cluster 2 is mostly
a high-frequency event and is

likely associated with wind bursts.
Thermal glitches, identified with clusters 3–8 are mostly

occurring for 4–8 during the cooling phase of the late after-
noon, reaching maximum activity between 18:00 and 20:00
LMST and a diffuse activity all the night. Cluster 3 glitches
are on their side observed almost all the night.

For all clusters, the sol-by-sol repetition suggests that the clus-
tering is able to capture the waveform and noise differences of
these events, and that these are directly related to LMST and/or
to a physical processes depending on LMST. Although the
sequence is found every sol, differences in amplitude and in
start/end times for each cluster are observed in sol-to-sol com-
parisons, as shown in Figure 10. Climatic variation will need fur-
ther analysis, but we can expect these to generate mostly a drift of
the occurrence LMST of the temperature correlated clusters.

CHARACTERIZATION OF SEIS MULTIGLITCHES
Our approach detected another type of events in the data: these
are glitches appearing in pairs, repeating with a stable time off-
set within the event window, and also repeating as the previous
one every sol. We refer to these as doublet and, more generally,
tuplet glitches.

To identify these, we simply increased the basic time win-
dow from 100 to 1200 s. We now obtained six clusters. For a
test made on two weeks of data in April 2019, the learning
process converged after 8000 epochs and detected sequences
of tuplet glitches with quasi-periodic recurrence times of 83,

Figure 8. Glitch detection timing. Histogram showing the time difference of glitches cataloged by Scholz et al. (2020)
and the glitch clusters. Only differences smaller than 10 s are shown in sol 184. In total, 127 glitches are listed in
catalog. In the figure’s legend, we mention the total number of glitches for each cluster out of its total event’s
number. The color version of this figure is available only in the electronic edition.
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Figure 9. Back azimuths and dip of the events of clusters 1, 2, and 8 recorded
on sol 183. Figures (a), (c), (e) show the back azimuth of the clusters 1, 2, and
8, respectively. The first three plots on the left show the back azimuth of the
clusters 1, 2, and 8. For each cluster, the corresponding events are plotted with
points as a function of their back azimuth from 0° to 360° along the outer
circle and as a function of their index along the radius. The events are assumed
to be linearly polarized. The inner dashed circles give the event indices. Events
in the center have the BS with the cluster centroid. Note that these numbers
are different for each cluster. Azimuths related to the Seismic Experiment for

Interior Structure (SEIS) instrument feature are given on the outer circle and
include: the sensitivity azimuth of the VBB (U, V, W) and SP sensors (SP2, SP3),
the feet of the Leveling System (LVL) (LVL1-2-3), the feet of the Wind Thermal
Shield subsystem (WTS E, W, N), and the Load Shunt Assembly (LSA). SP1 is
not listed, because this is the vertical-component SP sensor. Figures (b), (d),
and (f) illustrate the dip of 1, 2, and 8 clusters, respectively, following the same
representation as the azimuth. The color version of this figure is available only
in the electronic edition.
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208, 280, 295, 327, and 374 s. We provide further details in
Figures S2 and S14. For a two-week period in June 2019 (from
sols 183 to 197), the quasi-period recurrence times found are
91, 198, 208, 218, 280, 368, and 385 s. We provide further
details in Figures S2 and S15. Although the recurrence times
vary slightly, they concentrate in the ranges 80–90, 195–220,
280, and 365–385 s. Figure 11 shows examples of glitches
repeating with about 368 s delay, with 574 events found during
a long sequence, from sols 184 to 198, and the aligned weighted
stack of all these events. A mean rate of about 28 events per sol
is therefore found for these events, and the root mean square of
the 368 s time offset is only 2.3 s. An interesting finding is that
these signals are not present during some periods of the night,
roughly between 1 and 7 LMST. Further works, outside the
scope of this article, will be necessary to understand if they
are instrument or lander generated.

Clearly, the occurrence of these glitches cannot be assumed as
random, and this might impact analysis assuming stochastic
ambient noise. In this regard, the timing of mantle and core sig-
nals proposed by Deng and Levander (2020) from autocorrela-
tion of the raw (and nondeglitched) SEIS data are coinciding
with the 280 and 380 s delays found in doublet clusters. An
in-depth analysis of the impact of glitches has been made by
Kim et al. (2021), confirming that these signals must be handled

with care for any geophysical
interpretation. To our knowl-
edge, the clustering analysis
proposed here is at this time
the only proposed method ena-
bling the identification in the
SEIS data of doublets and, gen-
erally speaking, of multiglitches
with nonstochastic timing.
Furthermore, it allows us to find
periods in the data, during
which these signals disappear,
and which might be more
adequate for autocorrelation
analysis.

PRESSURE DROP
CLUSTERS AND
CATALOG
We now analyze the correla-
tions between SEIS microevent
clusters and pressure drops
induced by atmospheric vorti-
ces, very frequent in Elysium
Planitia (Banfield et al.,
2020a) and more generally the
efficiency of clustering for pres-
sure signals. We do it first with
a clustering analysis of the pres-

sure signal alone and then compare the timing of pressure clus-
ters and the SEIS clusters obtained in the previous sections with
pressure drop catalogs (Lorenz et al., 2020; Spiga et al., 2021).

Cataloging pressure drops with DSN
For the first step, we use only two layers in the DSN structure
and limit the PCA to three components instead of six. This
focuses on the most frequent and clearest events. The 10 sam-
ples per second calibrated pressure data (Banfield et al., 2020b)
were used. The training was made with pressure data starting
on 2 June 2019 00:00:00 UTC and ending on 11 June 2019
00:00:00 UTC, covering sols 182–191.

We obtained seven clusters, described in Section 4 of supple-
mental material, and focussed here on the three clusters clearly
associated with pressure drops. Their stacks are shown in
Figure 12, and these clusters differ by their frequency content
and waveform shape. The less frequent events from cluster 2
have, for example, a more pronounced peak shape than those
of clusters 0 and 1.

Pressure drop catalog correlation with the pressure
clusters
To confirm the link with pressure drops, we use the published
pressure drop catalog. It reports 278 pressure drops larger than

Figure 10. Temperature correlation. (a) Temperature (in Celsius) recorded at three different locations—on the lander
(outside temperature in red), under seismometer thermal shielding (scientific temperature in blue), and next to the
VBB U sensors (VBB temperature in black). For each local hour, the color in the background corresponds to the
cluster that has the maximum number of detection, as shown in the bottom plot. (b) Number of detection per hour
for the nine clusters. Each color line corresponds to one cluster with the same color code, as shown in Figure 7 (0,
blue; 1, orange; 2, green; 3, red; 4, purple; 5, brown; 6, pink; 7, gray; 8, gold). Both plots are a function of local
time in sols, from sols 183 to 189. (c) U, V, and W raw data presented from sols 184 to 189. The color version of
this figure is available only in the electronic edition.
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−0.3 Pa during the learning period. For each event of the three
clusters, we determine first its time through cross correlation
with the cluster centroid waveform and compute then the time
difference with the closest cataloged pressure drop. Events with
a time difference larger than the learning window (100 s) are
rejected (about 8%). The learning detected 341 events for clus-
ter 0, 566 events for cluster 1, and 24 events for cluster 2,
respectively. Similarity coefficients were larger than 0.00018
for cluster 0, 5:3 × 10−7 for cluster 1, and 0.0019 for cluster
2, respectively. In total, 111.9% (311 learned events out of
278 in the pressure drop catalog) of the reported dust devils
are within this 100 s window, and 92% have furthermore a time
difference of less than 20 s. DSN can, therefore, catalog the
pressure drops directly from pressure data, and in addition
improve the detection of smaller and not yet reported ones.
For these two clusters, we detected 3.34 times more events than
those found manually, with pressure amplitudes of −0.015 Pa
for cluster 0, −0.017 Pa for cluster 1, and −0.2 Pa for cluster 2,
respectively.

Figure 13 shows the occurrence time difference between the
DSN-detected pressure drop and those of the catalog. Most of

the events timing are within
±5 s from those of the catalog.
Note also the secondary peaks,
mostly 25 s prior, which is
likely related to double pres-
sure drop structure.

Figure 14 summarizes the
results with a frequency–
amplitude log–log cumulative
histogram. This shows that
the power −2 slope proposed
by Lorenz et al. (2021) can
be extended to lower ampli-
tudes and at least down to
0.2 Pa. This doubles the num-
ber of pressure drops. The clus-
ter 2, with a sharp pressure
drop, seems more sensitive to
noise and is found only for
the largest pressure drop,
whereas the cluster 0 might
complete, for low amplitude,
the cluster 1. Therefore,
machine learning is efficient,
and likely better at detecting
and classifying pressure drops
than previous studies made
with InSight data.

VBB clusters correlation
with the pressure clusters
Let us now compare the

occurrence time of the seismic VBB clusters and those of
the published dust devils catalog to identify VBB events related
to pressure drops. Cluster numbers are those from the
Comparison between SEIS Glitch Clusters and Glitch Catalog,
the Correlation of SEIS Clusters with Temperature and Sol
Quasi-Periodicity, and the Characterization of SEIS
Multiglitches sections.

Let us first focus on pressure drops found with a time delay
within ±100 s to a cluster event. For a cluster with a rate of N
event per sol, a fraction of these might be coincident just by
chance. In such a random process, the probability to get n
pressure drops in the N windows of ΔT � 200 s is
p�n� � an0C�N ; n�, in which C�N ; n� is the binomial coefficient
of n combinations over N and a0 � ΔT=sol, in which sol is the
duration of one sol. This provides the 1σ threshold for all clus-
ters, respectively, equal to n = 13, 13, 3, 8, 3, 6, 3, 2, 2 for clus-
ters 0–8. These numbers were all computed for the reference
period detailed in Section 1 of supplemental material for which
the list of all clusters can be found.

Only five clusters are found above the 1σ threshold, with
associated histograms in Figure 15: clusters 0, 1, 2, 4, and 8,

Figure 11. (a) Cluster of doublet glitches with 368 s time delay on component W. Amplitudes are normalized as
shown in Figure 4, and root mean square (rms) is 2.3 s. (b) The LMST of these glitches show that an interruption is
observed during the coldest time of the night. The color version of this figure is available only in the electronic
edition.
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with a number of pressure drops, respectively, 14×, 7×, 6×,
1.5×, and 8.5× those of the 1σ thresholds. For the 201 pressure
drops reported in the test period from 3 to 10 June 2019, 90%
(respectively 50%) of these pressure drops can be associated
with an event of cluster 0 (respectively, 1).

With a closer look at Figure 15, we find pressure drops within
±25 s for cluster 0 and ±40 s for cluster 1. In addition, we
observed on the centroid waveforms (Fig. 4), long-period oscil-
lations, 25 s before the event’s center for cluster 0 and 40 s before
for cluster 1. VBB events are, therefore, detected in advance of

the drop in pressure data. The
glitch clusters 4 and 8 are also
correlated with pressure drops.
Their dip is close to horizontal,
suggesting generation by the
pressure drop of a microtilt on
the instrument, in contrary to
clusters 0 and 1 for which the
signal has a significant vertical
component. Finally, some of
the events of cluster 2, related
to wind bursts, are also associ-
ated with pressure drop. They
account only for about 10% of
the pressure drops and are likely
related to the high winds
observed during the pressure
drop events.

CONCLUSION
The DSN method has proven to be powerful and effective
when applied to the Martian dataset gathered by the InSight
mission. It has successfully classified the dynamics of the noise
in an automatic and unsupervised way. DSN is capable of
extracting multiple features in a large dimensional space, to
which the noise is mapped. This allows us to better understand
and identify the properties in each time window of SEIS and
pressure data. Naturally, the DSN approach can be generalized
to other time series. With the multiple wavelets cascade and
activation functions, patterns that cannot be easily identified
are retrieved.

Figure 12.Waveforms of pressure drop clusters. The stacked waveforms are obtained using the approach outlined in
the Comparison between SEIS Glitch Clusters and Glitch Catalog section. The color version of this figure is available
only in the electronic edition.

Figure 13. Timing of pressure drops. Histogram showing the number of pres-
sure drops as a function of time difference between the pressure drop
center, as reported in the pressure drop catalog of Spiga et al. (2021) and
the center of the pressure drop, as event of clusters 0, 1, and 2. The bin size
is 4 s for clusters 0, and 1 and 2 s for cluster 2. The learning window is
100 s, and the difference is reported when within ±100 s. The color version
of this figure is available only in the electronic edition.

Figure 14. Statistics of pressure drops. Cumulative histogram of the pressure
drops from Spiga et al. (2021) catalog (blue) and for the combined clusters
0-1-2 (orange). The histograms for each pressure drop cluster are also
provided, with colors purple, red, and green for 0, 1, and 2, respectively. The
color version of this figure is available only in the electronic edition.
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As a result, we detected multiple environmental Martian
events such as glitches, pressure drops, and wind bursts with
efficiency and sensitivity comparable with the published catalogs
but in a full unsupervised way. More importantly, the DSN was
able to discover and characterize, for the first time, tuplets of
glitches, for which stable separation in time must be integrated
in future autocorrelation analysis to ensure that these quasi-peri-
odic events are not misinterpreted in terms of deep interior seis-
mic phases. Therefore, DSN appears as a powerful tool for
studying the nonstochasticity of seismic noise and finding noise
structures both in terms of waveform and spectra. When imple-
mented on continous data, this will allow possible misinterpre-
tation between seismic phases and microseismic noise bursts,
especially for low signal-to-noise ratio events.

This analysis also shows that unsupervised deep learning
efficiently identifies clusters of microevents in seismic data.
If used in parallel with more classical seismic detection algo-
rithms, this could prevent detection saturation and select noise
samples for future planetary or the Earth’s ocean-bottom geo-
physical observatories unable to fully transmit their data. In
this regard, DSN can not only enhance the robotic system per-
formance, but also increase science return.

DATA AND RESOURCES
Seismic Experiment for Interior Structure (SEIS) data used are avail-
able in SEED format (InSIght Mars SEIS Service, 2019a) or PDS4 for-
mat (InSIght Mars SEIS Service, 2019b) at the respective dois: 10

.18715/SEIS.INSIGHT.XB_2016
and 10.17189/1517570. Pressure
and atmospheric data are available
at National Aeronautics and Space
Administration (NASA) Planetary
data System (PDS) at the respec-
tives dois: 10.17189/1518939
and 10.17189/1518950.
Namely, we used in addition to
seismic data the very broadband
(VBB) sensor’s temperatures
(03.VKU, 03.VKV, 03.VKW), the
Leveling System (LVL) tempera-
ture (VKI), and for Auxiliary
Payload Sensors Suite (APSS),
the atmospheric temperature
(VKO) and pressure (03.BDO).
Catalogs are available for Mars
Quake Service (MQS) event in
InSight Marsquake Service
(2020), for pressure drops in
Spiga et al. (2021), and for glitches
in Scholz et al. (2020). The deep
scattering network clustering algo-
rithm used in this study is the
original repository made on July
2020 at https://github.com/
leonard-seydoux/scatnet. Ppol

software was downloaded on February 2019 at https://
ppol.readthedocs.io/en/latest/. This article is accompanied by two
supplementary materials. Supplementary material A that contains
additional figures to enhance and complete the article results.
Supplementary material B contains three folders: The first folder
“GlitchListing” is the list of glitches provided by Scholz et al.
(2020). The second folder “PressureClusters” corresponds to the
learned pressure drop data (three files) and documents all events
of the three pressure drop clusters shown in the article. In each file,
columns provide the event index, the UTC time, the similarity coef-
ficient, the correlation coefficient, the amplitude, and finally the
amplitude of the event in Pa. The final folder “VBBClusters” describes
the VBB cluster’s data and documents all events of the nine VBB clus-
ters shown in the article. In each file, columns provide the event index,
the UTC time, the similarity coefficient, the correlation coefficient,
and the amplitude of, respectively, U, V, and W channels. All corre-
lation coefficients are those with the event having the highest similar-
ity coefficient, as explained in the article.

DECLARATION OF COMPETING INTERESTS
The authors declare no conflict of interest that could influence
the work reported in this article.

ACKNOWLEDGMENTS
The authors acknowledge National Aeronautics and Space
Administration (NASA), Centre National d'Etudes Spatiales
(CNES), their partner agencies and Institutions (United Kingdom
Space Agency [UKSA], Swiss Space Office [SSO], Deutsches
Zentrum für Luft- und Raumfahrt [DLR], Jet Propulsion

Figure 15. VBB pressure drop statistics. Histogram showing the number of pressure drops as a function of time
difference between the pressure drop center, as reported in the pressure drop catalog and the center of the VBB
events of several clusters. The learning window is 100 s, and the difference is only reported when within ±100 s.
Only clusters for which the number of coincidence is larger than the 1 − σ value obtained for random process are
shown. The color version of this figure is available only in the electronic edition.

Volume 111 Number 6 December 2021 www.bssaonline.org Bulletin of the Seismological Society of America • 2979

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/111/6/2964/5475350/bssa-2021095.1.pdf
by CNRS_INSU user
on 10 February 2022

http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
http://dx.doi.org/10.18715/SEIS.INSIGHT.XB_2016
http://dx.doi.org/10.17189/1517570
http://dx.doi.org/10.17189/1518939
http://dx.doi.org/10.17189/1518950
https://github.com/leonard-seydoux/scatnet
https://github.com/leonard-seydoux/scatnet
https://ppol.readthedocs.io/en/latest/
https://ppol.readthedocs.io/en/latest/


Laboratory [JPL], Institut du Physique du Globe de Paris [IPGP]-
Centre National de la Recherche Scientifique [CNRS],
Eidgenössische Technische Hochschule Zürich [ETHZ], Imperial
College London [ICL], Max Planck Institute for Solar System
Research [MPS], Max–Planck–Gesellschaft [MPG]), and the flight
operations team at JPL, SEIS on Mars operation Center (SISMOC),
Mars SEIS data service (MSDS), Incorporated Research Institutions
for Seismology–Data Management Center (IRIS-DMC), and
Planetary Data System for providing SEED Seismic Experiment for
Interior Structure (SEIS) data. Salma Barkaoui acknowledges CNES
and the Ecole Doctorale 560 STEP’UP for her Ph.D. support.
French authors are supported by Agence Nationale de la recherche
(ANR) (ANR-19-CE31-0008-08) and by CNES for SEIS science sup-
port. Maarten V. de Hoop was supported by U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences,
Chemical Sciences, Geosciences and Biosciences Division under
Grant Number DE-SC0020345 and the Simons Foundation under
the MATH + X program. The authors thank Guest Editor Victor
C. Tsai, and the two anonymous reviewers for their fruitful reviews
which have improved greatly the article, as well as Renée C. Weber for
her review and reading. This is the InSight Contribution Number 83
and IPGP Contribution Number 4248.

REFERENCES
Andén, J., and S. Mallat (2014). Deep scattering spectrum, IEEE Trans.

Signal Process. 62, no. 16, 4114–4128.
Banerdt, W. B., S. E. Smrekar, D. Banfield, D. Giardini, M. Golombek,

C. L. Johnson, P. Lognonné, A. Spiga, T. Spohn, C. Perrin, et al.
(2020). Initial results from the InSight mission on Mars, Nature
Geosci. 13, no. 3, 183–189.

Banfield, D., J. A. Rodriguez-Manfredi, C. T. Russell, K. M. Rowe, D.
Leneman, H. R. Lai, P. R. Cruce, J. D. Means, C. L. Johnson, A.
Mittelholz, et al. (2018). InSight auxiliary payload sensor suite
(APSS), Space Sci. Rev. 215, no. 1, 1–33.

Banfield, D., A. Spiga, C. Newman, F. Forget, M. Lemmon, R. Lorenz,
N. Murdoch, D. Viudez-Moreiras, J. Pla-Garcia, R. F. Garcia, et al.
(2020a). The atmosphere of Mars as observed by InSight, Nature
Geosci. 13, no. 3, 190–198.

Banfield, D., A. Spiga, C. Newman, F. Forget, M. Lemmon, R. Lorenz,
N. Murdoch, D. Viudez-Moreiras, J. Pla-Garcia, R. F. Garcia, et al.
(2020b). Insight APSS PS data product bundle, urn:nasa:pds:
insightps, doi: 10.17189/1518939.

Bergen, K. J., and G. C. Beroza (2018). Earthquake fingerprints:
Extracting waveform features for similarity-based earthquake
detection, Pure Appl. Geophys. 176, no. 3, 1037–1059.

Bruna, J., and S. Mallat (2013). Invariant scattering convolution net-
works, IEEE Trans. Pattern Anal. Mach. Intell. 35, no. 8, 1872–1886.

Ceylan, S., J. F. Clinton, D. Giardini, M. Böose, C. Charalambous, M.
van Driel, A. Horleston, T. Kawamura, A. Khan, G. Orhand-
Mainsant, et al. (2021). Companion guide to the Marsquake cata-
log from InSight, sols 0478: Data content and non-seismic events,
Phys. Earth Planet. In. 310, 106597.

Charalambous, C., A. E. Stott, T. Pike, J. McClean, T. Warren, A.
Spiga, D. Banfield, R. F. Garcia, J. Clinton, S. C. Stäler, et al.
(2021). A comodulation analysis of atmospheric energy injection
into the ground motion at InSight, Mars, J. Geophys. Res. 126,
e2020JE006538.

Clinton, J., S. Ceylan, M. van Driel, D. Giardini, S. C. Stähler, M.
Böose, C. Charalambous, N. L. Dahmen, A. Horleston, T.
Kawamura, et al. (2021). The Marsquake catalogue from
InSight, sols 0478, Phys. Earth Planet. In. 310, 106595.

Clinton, J., D. Giardini, M. Böose, S. Ceylan, M. Van Driel, F. Euchner,
R. F. Garcia, S. Kedar, A. Khan, S. C. Stähler, et al. (2018). The
Marsquake Service: Securing daily analysis of SEIS data and build-
ing the Martian seismicity catalogue for InSight, Space Sci. Rev.
214, Article Number 133, 1–33.

Deng, S., and A. Levander (2020). Autocorrelation reflectivity of Mars,
Geophys. Res. Lett. 47, no. 16, e2020GL089630.

Falcin, A., J.-P. Métaxian, J. Mars, É. Stutzmann, J.-C. Komorowski, R.
Moretti, M. Malfante, F. Beauducel, J.-M. Saurel, C. Dessert, et al.
(2021). A machine-learning approach for automatic classification
of volcanic seismicity at La Soufriere Volcano, Guadeloupe, J.
Volcanol. Geoth. Res. 411, 107151.

Fontaine, F. R. R., G. Barruol, B. L. N. Kennett, G. H. R. Bokelmann,
and D. R. Reymond (2009). Upper mantle anisotropy beneath
Australia and Tahiti from P wave polarization: Implications for
real-time earthquake location, J. Geophys. Res. 114, no. B3, doi:
10.1029/2008JB005709.

Garcia, R. F., B. Kenda, T. Kawamura, A. Spiga, N. Murdoch, P. H.
Lognonné, R. Widmer-Schnidrig, N. Compaire, G. Orhand-
Mainsant, D. Banfield, et al. (2020). Pressure effects on the
SEIS-InSight instrument, improvement of seismic records, and
characterization of long period atmospheric waves from
ground displacements, J. Geophys. Res. 125, no. 7, e2019JE006278.

Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn,
Keras, and Tensor-Flow: Concepts, Tools, and Techniques to
Build Intelligent Systems, O’Reilly Media, Sebastopol,
California.

Giardini, D., P. Lognonné, W. B. Banerdt, W. T. Pike, U. Christensen,
S. Ceylan, J. F. Clinton, M. van Driel, S. C. Stähler, M. Böose, et al.
(2020). The seismicity of Mars, Nature Geosci. 13, no. 3, 205–212.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning,
MIT Press, Boston, Massachusetts.

Hibert, C., D. Michéa, F. Provost, J.-P. Malet, and M. Geertsema
(2019). Exploration of continuous seismic recordings with a
machine learning approach to document 20 yr of landslide activity
in Alaska, Geophys. J. Int. 219, no. 2, 1138–1147.

InSight Marsquake Service (2020). Mars seismic catalogue, InSight
mission; v12/1/2020, ETHZ, IPGP, JPL, ICL, ISAE-Supaero,
MPS, Univ. Bristol, doi: 10.12686/A6.

InSight Mars SEIS Data Service (2019a). SEIS raw data, InSight mis-
sion, IPGP, JPL, CNES, ETHZ, ICL, MPS, ISAE-Supaero, LPG,
MFSC, doi: 10.18715/seis.insight.xb_2016.

InSight SEIS Data Service (2019b). InSight SEIS Data Bundle, InSight
SEIS Science Team, NASA Planetary Data System, doi: 10.17189/
1517570.

Jia, Y., and J. Ma (2017). What can machine learning do for seismic
data processing? An interpolation application, Geophysics 82,
no. 3, V163–V177.

Jordan, M. I., and T. M. Mitchell (2015). Machine learning: Trends,
perspectives, and prospects, Science 349, no. 6245, 255–260.

Kenda, B., M. Drilleau, R. F. Garcia, T. Kawamura, N. Murdoch, N.
Compaire, P. Lognonné, A. Spiga, R. Widmer-Schnidrig, P.
Delage, et al. (2020). Subsurface structure at the InSight landing

2980 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 111 Number 6 December 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/111/6/2964/5475350/bssa-2021095.1.pdf
by CNRS_INSU user
on 10 February 2022

urn:nasa:pds:insightps
urn:nasa:pds:insightps
http://dx.doi.org/10.17189/1518939
http://dx.doi.org/10.1029/2008JB005709
http://dx.doi.org/10.12686/A6
http://dx.doi.org/10.18715/seis.insight.xb_2016
http://dx.doi.org/10.17189/1517570
http://dx.doi.org/10.17189/1517570


site from compliance measurements by seismic and meteorological
experiments, J. Geophys. Res. 125, no. 6, e2020JE006387.

Kim, D., P. Davis, V. Leki, R. Maguire, N. Compaire, M. Schimmel, E.
Stutzmann, J. Irving, P. Lognonné, J.-R. Scholz, et al. (2021).
Potential pitfalls in the analysis and structural interpretation of
seismic data from the Mars InSight mission, Bull. Seismol. Soc.
Am. doi: 10.1785/0120210123.

Kong, Q., D. T. Trugman, Z. E. Ross, M. J. Bianco, B. J. Meade, and P.
Gerstoft (2018). Machine learning in seismology: Turning data
into insights, Seismol. Res. Lett. 90, no. 1, 3–14.

Lognonné, P., W. B. Banerdt, D. Giardini, W. T. Pike, U. Christensen,
P. Laudet, S. de Raucourt, P. Zweifel, S. Calcutt, M. Bierwirth, et al.
(2019). SEIS: InSight’s seismic experiment for internal structure of
Mars, Space Sci. Rev. 215, no. 1, 12.

Lognonné, P., W. B. Banerdt, W. T. Pike, D. Giardini, U. Christensen,
R. F. Garcia, T. Kawamura, S. Kedar, B. Knapmeyer-Endrun, L.
Margerin, et al. (2020). Constraints on the shallow elastic and
anelastic structure of mars from InSight seismic data, Nature
Geosci. 13, no. 3, 213–220.

Lorenz, R. D., M. T. Lemmon, J. Maki, D. Banfield, A. Spiga, C.
Charalambous, E. Barrett, J. A. Herman, B. T. White, S. Pasco, et al.
(2020). Scientific observations with the insight solar arrays: Dust,
clouds, and eclipses on Mars, Earth Space Sci. 7, no. 5,
e2019EA000992.

Lorenz, R. D., A. Spiga, P. Lognonné, M. Plasman, C. E. Newman, and
C. Charalambous (2021). The whirlwinds of Elysium: A catalog
and meteorological characteristics of “dust devil” vortices observed
by InSight on Mars, Icarus 355, 114119.

Malfante, M., M. D. Mura, J.-P. Metaxian, J. I. Mars, O. Macedo, and
A. Inza (2018). Machine learning for volcano-seismic signals:
Challenges and perspectives, IEEE Signal Process. Mag. 35,
no. 2, 20–30.

Mora, L. (2019). APSS PS data, Atmosphere’s node, doi: 10.17189/
1518939.

Obara, K. (2002). Nonvolcanic deep tremor associated with
subduction in southwest Japan, Science 296, no. 5573, 1679–
1681.

Oyallon, E., E. Belilovsky, and S. Zagoruyko (2017). Scaling the
scattering transform: Deep hybrid networks, Proc. of the IEEE
International Conf. on Computer Vision (ICCV), Venice, Italy,
22–29 October.

Peterson, J. (1993). Observations and modeling of seismic background
noise, U.S. Geol. Surv. Open-File Rept. 93-322.

Priyadarshini, I., and V. Puri (2021). Mars weather data analysis using
machine learning techniques, Earth Sci. Inf. doi: 10.1007/s12145-
021-00643-0.

Schimmel, M., E. Stutzmann, P. Lognonné, N. Compaire, P. Davis, M.
Drilleau, R. Garcia, D. Kim, B. Knapmeyer-Endrun, V. Lekic, et al.
(2021). Seismic noise autocorrelations on Mars, Earth Space Sci. 8,
no. 6, e2021EA001755, doi: 10.1029/2021ea001755.

Scholz, J.-R., G. Barruol, F. R. Fontaine, K. Sigloch, W. Crawford, and
M. Deen (2017). Orienting ocean-bottom seismometers from P-
wave and Rayleigh wave polarisations, Geophys. J. Int. 208,
no. 3, 1277–1289, doi: 10.1093/gji/ggw426.

Scholz, J.-R., R. Widmer-Schnidrig, P. Davis, P. Lognonné, B. Pinot, R.
F. Garcia, K. Hurst, L. Pou, F. Nimmo, S. Barkaoui, et al. (2020).

Detection, analysis, and removal of glitches from InSight’s seismic
data from Mars, Earth Space Sci. 7, no. 11, e2020EA001317.

Seydoux, L., R. Balestriero, P. Poli, M. de Hoop, M. Campillo, and R.
Baraniuk (2020). Clustering earthquake signals and background
noises in continuous seismic data with unsupervised deep learning,
Nat. Comm. 11, no. 1, 3972.

Spiga, A., N. Murdoch, R. Lorenz, F. Forget, C. Newman, S. Rodriguez, J.
PlaGarcia, D. V. Moreiras, D. Banfield, C. Perrin, et al. (2021). A
study of daytime convective vortices and turbulence in the
Martian planetary boundary layer based on half-a-year of insight
atmospheric measurements and large-eddy simulations, J. Geophys.
Res. 126, no. 1, e2020JE006511.

Stutzmann, E., M. Schimmel, P. Lognonné, A. Horleston, S. Ceylan,
M. van Driel, S. Stahler, B. Banerdt, M. Calvet, C. Charalambous,
et al. (2021). The polarization of ambient noise on Mars, J.
Geophys. Res. 126, no. 1, e2020JE006545.

AUTHORS AND AFFILIATIONS
Salma Barkaoui: Institut de Physique du Globe de Paris, Université
de Paris, CNRS, Paris, France, https://orcid.org/0000-0001-7266-
0815; Philippe Lognonné: Institut de Physique du Globe de Paris,
Université de Paris, CNRS, Paris, France, https://orcid.org/0000-
0002-1014-920X; Taichi Kawamura: Institut de Physique du Globe
de Paris, Université de Paris, CNRS, Paris, France, https://orcid.org/
0000-0001-5246-5561; Éléonore Stutzmann: Institut de Physique du
Globe de Paris, Université de Paris, CNRS, Paris, France, https://
orcid.org/0000-0002-4348-7475; Léonard Seydoux: Institut des
Sciences de la Terre, Université Grenoble-Alpes, UMR CNRS, Gières,
France, https://orcid.org/0000-0002-6596-5896; Maarten V. de
Hoop: Rice University, Houston, Texas, U.S.A.; Randall Balestriero:
Rice University, Houston, Texas, U.S.A., https://orcid.org/0000-
0002-5692-4187; John-Robert Scholz: Max Planck Institute for Solar
System Research, Göttingen, Germany, https://orcid.org/0000-
0003-1404-2335; Grégory Sainton: Institut de Physique du Globe de
Paris, Université de Paris, CNRS, Paris, France, https://orcid.org/
0000-0002-9375-4877; Matthieu Plasman: Institut de Physique du
Globe de Paris, Université de Paris, CNRS, Paris, France, https://
orcid.org/0000-0002-5630-2089; Savas Ceylan: Institute for
Geophysics, ETH Zürich, Zürich, Switzerland, https://orcid.org/
0000-0002-6552-6850; John Clinton: Swiss Seismological Service,
ETH Zürich, Zürich, Switzerland, https://orcid.org/0000-0001-
8626-2703; Aymeric Spiga: Laboratoire de Météorologie Dynamique/
Institut Pierre Simon Laplace (LMD/IPSL), Sorbonne Université,
Centre National de la Recherche Scientifique (CNRS), Paris, France,

https://orcid.org/0000-0002-6776-6268; Rudolf Widmer-
Schnidrig: University of Stuttgart, Institute of Geodesy, Stuttgart,
Germany, https://orcid.org/0000-0001-9698-2739;
Francesco Civilini: California Institute of Technology, Pasadena,
California, U.S.A., https://orcid.org/0000-0003-0669-0404; and W.
Bruce Banerdt: Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California, U.S.A., https://orcid.org/0000-
0003-3125-1542

Manuscript received 30 March 2021

Published online 9 November 2021

Volume 111 Number 6 December 2021 www.bssaonline.org Bulletin of the Seismological Society of America • 2981

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/111/6/2964/5475350/bssa-2021095.1.pdf
by CNRS_INSU user
on 10 February 2022

http://dx.doi.org/10.1785/0120210123
http://dx.doi.org/10.17189/1518939
http://dx.doi.org/10.17189/1518939
http://dx.doi.org/10.1007/s12145-021-00643-0
http://dx.doi.org/10.1007/s12145-021-00643-0
http://dx.doi.org/10.1029/2021ea001755
http://dx.doi.org/10.1093/gji/ggw426
https://orcid.org/0000-0001-7266-0815
https://orcid.org/0000-0001-7266-0815
https://orcid.org/0000-0001-7266-0815
https://orcid.org/0000-0002-1014-920X
https://orcid.org/0000-0002-1014-920X
https://orcid.org/0000-0001-5246-5561
https://orcid.org/0000-0001-5246-5561
https://orcid.org/0000-0002-4348-7475
https://orcid.org/0000-0002-4348-7475
https://orcid.org/0000-0002-6596-5896
https://orcid.org/0000-0002-5692-4187
https://orcid.org/0000-0002-5692-4187
https://orcid.org/0000-0003-1404-2335
https://orcid.org/0000-0003-1404-2335
https://orcid.org/0000-0002-9375-4877
https://orcid.org/0000-0002-9375-4877
https://orcid.org/0000-0002-5630-2089
https://orcid.org/0000-0002-5630-2089
https://orcid.org/0000-0002-6552-6850
https://orcid.org/0000-0002-6552-6850
https://orcid.org/0000-0001-8626-2703
https://orcid.org/0000-0001-8626-2703
https://orcid.org/0000-0002-6776-6268
https://orcid.org/0000-0001-9698-2739
https://orcid.org/0000-0003-0669-0404
https://orcid.org/0000-0003-3125-1542
https://orcid.org/0000-0003-3125-1542

