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The classification of seismo-volcanic signals is performed manually at La Soufrière Volcano, which is time con-
suming and can be biased by subjectivity of the operator. We propose here a machine-learning-based model
for classification of these signals, to handle large datasets and provide objective and reproducible results. To de-
scribe theproperties of the signals,we used 104 statistical, entropy, and shape descriptor features computed from
the time waveform, the spectrum, and the cepstrum. First, we trained a random forest classifier with a dataset
provided by the Observatoire Volcanologique et Sismologique de Guadeloupe that consisted of 845 labeled events
that were recorded from 2013 to 2018: 542 volcano-tectonic (VT); 217 Nested; and 86 long period (LP). We ob-
tained an overalll accuracy of 72%.Wedetermined that the VT class includes a variety of signals that cover the VT,
Nested and LP classes. After visual inspection of the waveforms and spectral characteristics of the data set, we in-
troduced two new classes: Hybrid and Tornillo. A new random forest classifier was trained with this new infor-
mation, and we obtained a much better overall accuracy of 82%. The model is very good for recognition of all
event classes, except Hybrid events (67% accuracy, 70% precision). Hybrid events are often considered to be a
mix of VT and LP events. This can be explained by the nature of this class and the physical processes that include
both fracturing and resonating components with different modal frequencies. By analyzing the feature weights
and by training a model with the most important features, we show that a subset of the 14 best features is suffi-
cient to obtain a performance that is close to that of the model with the whole feature set. However, these best
features are different from the 13 best features obtained for another volcano in Peru, with only one feature com-
mon to both sets of best features. Therefore, themodel is not universal and itmust be trained for each volcano, or
it is too specific to the one station used here.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Volcanoes are highly complex nonlinear systemswhere their behav-
ior reflects a diversity of internal hidden processes that can lead to their
unrest and eruptive activity. Volcano monitoring rests on the paradigm
that various observable parameters have a more or less direct causal
link to these complex processes and to the internal variables of the sys-
tem, aswell as to a series of forcing andmodulating processes. Although
unrest is often linked to rate-dependent processes, this is not always the
case, as sometimes just the absence or presence of someobservables can
provide very valuable insight into the dynamics of these systems. Vol-
cano monitoring is crucial to evaluate the state of activity of a restless
volcano, and to determine the likelihood of a future eruption, along
with the probable temporal window of such an occurrence. Hence, vol-
cano monitoring constitutes one of the pillars of the scientific methods
that contribute to mitigate the risks to human societies. Among the
many disciplines used in volcano monitoring, which include geodesy,
geochemistry, gravimetry, geophysical imaging, thermal monitoring,
acoustics, and physical volcanology, seismology remains one of the
mostwidely developed. Seismology can provide anoften overwhelming
wealth of high-resolution continuous real-time data from networks of
sensors deployed on volcanoes, both on land and on the sea floor.
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Optimal seismic monitoring requires the detection, location, magni-
tude quantification, and classification of large numbers of volcano-
seismic signals, and itmust be performed daily at volcano observatories.
Given the vast progress in volcano seismology in recent decades and the
high-resolution monitoring of numerous very active volcanoes, there is
now a corpus of knowledge that allows the association of the different
types of seismic signals recorded at volcanoes to different source pro-
cesses with greater certainty (e.g., McNutt (2005); Chouet and Matoza
(2013); McNutt and Roman (2015)). Thus, together with other moni-
toring data, volcanic seismicity constitutes a fundamental tool to track
the evolution of the dynamics of volcanic activity in time and space, to
provide timely forecasts of the likelihood of future scenarios in a context
of uncertainty, which is intrinsic to the behavior of such complex non-
linear systems. The occurrence of some events might be precursors of
volcanic eruptions, and as such, can be used in early warning systems.

However, while the detection work is now mostly automatic, the
classification task is often performed manually. The manual classifica-
tion tasks are limited, and there are several factors that can decrease
the robustness of the labeling. The classification is based on the subjec-
tive judgement of the operator, so if the task is performed by several
people, the resulting classification criteria can vary from one person to
another. This work also has to be carried out in near real-time, while
there can be huge amounts of data to deal with, in particular during pe-
riods of volcanic crises, when the scientific interpretation needs to be
rapid and timely, so that the required advice can be provided by scien-
tists to the authorities to assist in their decision-making processes that
are designed to mitigate the risks to the population and the critical in-
frastructures. With the constantly increasing volumes of data and the
limitations of the manual classification, the development of automatic
tools using a machine-learning approach to rapidly classify these volca-
nic seismic signals as accurately as possible is essential for spatio-
temporal interpretation and process modeling of the data, as well as
for pattern recognition. This methodology thus has the potential to sig-
nificantly improve the timely tracking and analysis of volcanic unrest
and the forecasting of its possible evolution.

Themachine learningmethodology consists of training an algorithm
to do a task, here assigning a seismic class to a volcanic event. However,
rather than analyzing thewaveform of the signal, we transform this sig-
nal into a set of features that describes its characteristics. Then, the role
of themachine-learning algorithm is to define boundaries in the feature
space that specifically correspond to each class considered. To best dif-
ferentiate each of the classes, the features must be carefully chosen
and must represent the variability of the signals. Here, we chose to
use the feature set proposed by Malfante et al. (2018a, b), which pro-
vides a general and precise description of transient signals. These have
been shown to be efficient, and they also allow us to investigate
whether features selected at one volcano can be used for another
volcano.

One of thefirst attempts to automatically recognize earthquakeswas
made by Allen (1978), who built a decision tree, through which 70% of
the events could be recognized. Many studies in recent years have con-
sidered such automatic classification of volcano seismic events, and
many techniques have been used. Benítez et al. (2006) used hidden
Markov modeling for continuous classification of four classes, and they
reached an overall accuracy of 90%, where the overall accuracy is the
percentage of correct predictions out of all of the predictions made.
Hibert et al. (2014) used fuzzy logic and a method based on decision
rules to distinguish rockfalls from volcano-tectonic events, and they ob-
tained a success rate of 92%. Langet et al. (2014) used logistic regression
and a support vector machine, through which they obtained 90% and
92% good results, respectively. At Ubinas Volcano, Malfante et al.
(2018a, b) tried a random forest (RF) and support vector machine clas-
sifiers, and here they obtained 92.5% and 92.1% overall accuracy, respec-
tively. Titos et al. (2018) used a deep neural network approach with
seven classes of volcanic events, and they reached 94% overall accuracy.
At the same time, Curilem et al. (2018) used spectrogram
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cross-correlations in conjunction with the K-nearest neighbors algo-
rithm with five classes of volcanic events at Llaima Volcano (Chile),
and they reached an overall accuracy of 95%. Finally here, Bueno et al.
(2019) used a Bayesian neural network for classification of five classes
on two volcanoes, through which they achieved an excellent perfor-
mance of 92.1% when the two datasets were merged, and they also
showed that their uncertainties were linked to the state of unrest of
the volcanoes.

The algorithm used in the present study is a RF classifier, because
this allows a wide range of features to be handled without overfitting
and producing a model that is too specific to the data used for the train-
ing, and it also gives information about the feature importance. This
kind of algorithm has already been tested and has been shown to be
powerful not only in a volcanic context. Provost et al. (2016) proposed
an automatic classificationmethod based on the computation of 71 fea-
tures, and they used a RF classifier. They focused on classification of
events recorded near the Super-Sauze landslide (southeastern
France). They obtained 93% sensitivity for this classification, where the
sensitivity defines the proportion of the true events that are correctly
classified. Using several stations, Maggi et al. (2017) presented an oper-
ational automatic classifier based on a RF algorithm for monitoring at
the Piton de la Fournaise Volcano. They defined eight classes of seismic
signals used a multi-station approach, and they reached peak perfor-
mance when running on a three-station combination (92% good classi-
fication). Hibert et al. (2017) also proposed a RF classifier for binary
classification of seismic signals (rockfall, volcano-tectonic) thatwere re-
corded at the Piton de la Fournaise Volcano. They obtained results from
90% to 99%, which depended on the size of their training dataset.
Malfante et al. (2018a, b) proposed a large set of features for represen-
tation of the seismic signals, as 34 features in three representation do-
mains: temporal, spectral, and cepstral domains (where cepstral
describes the periodic properties of a signal, as commonly used in
speech processing, and as obtained by computing the Fourier transform
of the logarithm of the signal spectrum). Hence they defined 102 fea-
tures, which they used to train a RF classifier with signals from Ubinas
Volcano in Peru, and with which they obtained 92.5% overall accuracy.
Malfante et al. (2018a, b) also showed that with only the three best fea-
tures included, they obtained 84% overall accuracy, while with the 13
best features they obtained 90% overall accuracywith their RF classifier.

Some studies have refined their initial classification into a second
step of automatic classification. Langer et al. (2006) classified five volca-
nic classes at Soufrière Hills Volcano, inMontserrat. They obtained a fair
performance, where 70% of the automatic signal classification was con-
sistent with the manual classification of the signals. From an analysis of
themisclassified events, however, they found that for most of them, the
original a-priori classification was incorrect. They carried out a re-
analysis by hand of the seismic traces recorded at different seismic sta-
tions. Then they trained the classifier again using this new information,
and here obtained a success rate of 80% good classification. Hammer
et al. (2013) proposed a hiddenMarkov model for detection and classi-
fication of events in an alpine context. They applied their model to the
continuous signal and they managed to detect 97% of the events and
correctly classified 87% of them. At first they distinguished two classes,
as earthquake and quarry-blast, although they were also able to detect
rockfalls using a threshold criterion toflag a poormatch between the in-
coming signal and all of the defined classes. Langet et al. (2014) showed
that the current classification for Kawah Ijen Volcano with eight classes
was not adapted. By using an unsupervised classification, they showed
that with the data and features available, only five classes were clearly
distinguishable.

In this paper,we have applied amethod following that developed for
the first time byMalfante et al. (2018a, b), wherewe have automatically
classified volcano-seismic events recorded from 2013 to 2018 for La
Soufrière Volcano. In Section 2, we present La Soufrière Volcano, in
terms of its historical eruptive activity, thenwe detail how the detection
and classification work was performed at the observatory, and finally
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we discuss the dataset used in our analysis. Then, in Section 3, we pres-
ent themethod and discuss the large set of statistical features that were
calculated in the three domains to represent the seismic signals (i.e.,
temporal, spectral, cepstral domains). In Section 4, we test the robust-
ness of the actual classification, and then we refine the classification
by adding new classes in the analysis. We show which features are the
most useful to differentiate classes of volcanic eathquakes at La
Soufrière, and finally, we compare these important features with the
most valuable features defined by Malfante et al. (2018a, b) for Ubinas
Volcano.
2. Data

2.1. La Soufrière de Guadeloupe

La Soufrière de Guadeloupe is an active and hazardous volcano lo-
cated on the island of Basse-Terre in Guadeloupe in the Lesser Antilles
(Fig. 1). It is currently monitored by the Observatoire Volcanologique et
Sismologique de Guadeloupe - Institut de Physique du Globe de Paris
(OVSG-IPGP). Numerous magmatic and nonmagmatic eruptions have
occured in its history. The current andesitic dome was formed in the
last major magmatic eruption in 1530 CE (Boudon et al., 1988, 2008).
The volcano also had several historical nonmagmatic phreatic or hydro-
thermal explosiveeruptions in1690, 1797–98,1809–12, 1836–37,1956,
1976–77 CE (Komorowski et al., 2005). The last one of these was partic-
ularly violent, and required the evacuation of more than 70,000 people
for 6months; it was also associated with amajor controversy in the sci-
entific community (Komorowski et al., 2005; Hincks et al., 2014;
Komorowski et al., 2016). After this crisis, the volcanic activity gradually
declined, and in 1990 it reached its lowest level since the start of seismic
monitoring in 1950 (Komorowski et al., 2005; Villemant et al., 2014;
Jessop et al., 2019;Moretti et al., 2020). Since 1992, its seismic fumarolic
and thermal unrests has increased gradually (Komorowski et al., 2005;
Villemant et al., 2014) (OVSG-IPGP, 1999–2020), to reach its highest
level of seismic energy on April 27, 2018. This resulted in the strongest
volcano-tectonic earthquake recorded (M4.1) since the phreatic erup-
tion of 1976–77, with an associated episode of deep-sourced magmatic
degassing (Moretti et al., 2020). Although the release of seismic energy
has decreasedmarkedly since the January–April 2018 period of elevated
unrest, inAugust 2018, the seismicity of La Soufrière deGuadeloupewas
characterized by the periodic occurrence of earthquake swarms of low
energy, with numerous volcano-tectoninc (VT) and Nested signals,
and only rare long-period (LP) signals (OVSG, 2018–2020). Between
Fig. 1.Map of Guadeloupe. Red triangle, La Soufrière summit; blue stars, seismic stations.
TAG station was used in this study.
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August 2018 and the end of April 2020, 37 of these swarms were re-
corded by the OVSG (based on the swarm quantitative criteria defined
by the OVSG), for a total of 7114 identified signals with a mean of
192 ± 187 events per swarm (minimum, 13; maximum, 1014). Al-
though of low energy, this continuous heightened seismicity represents
a very significant challenge for event identification, classification, and in-
terpretation by the observatory staff, to provide tracking in an efficient
and timely manner during this unrest.

2.2. The OVSG classification

Currently at OVSG, the detection work is carried out mostly auto-
matically using a short-time average over long-time average algorithm.
The operators on site review the detected signals daily, considering the
several stations located at different distances from the volcano summit,
and they determine the magnitude and location of the signals. By ob-
serving the seismograms at different stations, they can assign a class
to detected events according to the nomenclature used by the OVSG.
The vast majority of volcanic signals have very low magnitudes (i.e.,
mostly negative) and short durations, and they are very often discern-
ible by only two stations, unlike tectonic earthquakes, which are gener-
ally recorded by more stations and by stations from larger networks.

Although five main types of signals are recognized in the data anal-
ysis by the observatory (Moretti et al., 2020), only threemain classes are
readily distinguishable on the continuous seismic traces during the
daily analytical protocol, which are defined as: VT events, Nested events,
and LP events. The two other classes, as Hybrid events and LP mono-
chromatic events (or Tornillos) are included as VT and LP events, re-
spectively. Fig. 2 shows the typical waveforms, spectrograms, and
Fouriers spectra of these events.

2.2.1. Volcano-tectonic, or high frequency, earthquakes
These events have a high frequency content similar to tectonic

earthquakes. Chouet and Matoza (2013) defined their frequency range
as 5 Hz to 15 Hz. For La Soufrière, a characteristic peak is often observed
between 10 Hz and 15 Hz. The waveform has a very impulsive P-wave
arrival. These are brittle failure events that are associated with stress
changes due to magma movement (Chouet and Matoza, 2013).

2.2.2. Nested earthquakes
These events appear as small packets of several seismic signals in

which successive events appear within the coda of each other. They
are not concomitant or precursors to any particular phenomenon
(Moretti et al., 2020). Nested events consist of a sequence of several
volcano-seismic events with very short inter-times, very often as more
than 6 seismic events in a short sequence (10 s)(Ucciani, 2015;
Moretti et al., 2020). These Nested events are mainly composed of VT
high-frequency events, but not always, as they can also sometimes be
Nested LPs. The different signals in a Nested event are not always simi-
lar, in terms of amplitude or waveform. The source process related to
this class is not well understood, and indeed, these events are specific
to La Soufrière Volcano. Waite et al. (2008) indicated the presence of
‘drumbeat’ LP earthquakes atMount St. Helens Volcano,which are char-
acterized by a restricted range of inter-event times and amplitudes
compared to the more typical activity and highly similar waveforms.
These properties require a persistent source location, a nondestructible
or rapidly renewing mechanism, and a physical system that involves
small oscillatory deviations from near equilibrium conditions. These
events of Mount St. Helens Volcano are similar to the Nested events of
La Soufrière de Guadeloupe; although the Nested events are mostly VT
and the drumbeats are LP, the different signals are similar in terms of
amplitude and waveform.

2.2.3. Long-period or low-frequency earthquakes
The frequency range for these events is generally taken as 0.5 Hz to

5 Hz (Chouet and Matoza, 2013). At La Soufrière, these LP events are



Fig. 2. Examples of waveforms filtered between 0.8 Hz and 25 Hz, for spectrogram and Fourier spectrua of volcano-tectonic events (top left), long-period events (top right), and Nested
events (bottom) recorded at station TAG, for the vertical component, from January 1, 2013, to December 31, 2018.
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characterized by a relatively narrow spectral content, at around 4 Hz.
Their waveforms are characterized by the emerging arrival of P-
waves, with the S-phases not identifiable. LP events can be generated
by the resonances of fractures, dykes, conduits, or cavities during the
propagation of magmatic or hydrothermal fluids (Chouet, 1988).
Some other models without fluids or resonance have been proposed,
such as trapped waves in loosely consolidated and shallow layers of
the crust (Bean et al., 2008). Another model proposed by Bean et al.
(2014) indicated that LPs might be generated by slow rupture of the
nonconsolidated volcanic material itself.
2.3. Catalog

The learning base used for this analysis comes from the catalog built
by the OVSG, which is available on WebObs (Beauducel et al., 2020).
WebObs is a web-based tool that performs integrated, centralized, and
automated real-time volcano monitoring. This system mainly offers a
modular database for equipment network management, with a dozen
evolving dedicated periodic tasks for each monitoring technique, such
as for seismology, geodesy, and geochemistry, with automated execu-
tion of periodic tasks and web-form interfaces for manual data input/
editing and export (Beauducel et al., 2020). Our study period extended
from 2013 to 2018. The information available onWebOBS indicates the
first arrival times, the event durations, and the classes.

In this paper, we focus on the data recorded by one component (i.e.,
the vertical component) of one station. We selected the three-
component Piton Tarade station (TAG; nanometric Taurus Trillum com-
pact 120S, at 100 Hz), a historic station of the La Soufriere monitoring
network that is located closer than 1 km from the summit. This station
is protected from external disturbance and is not subject to strong
winds, and we have the data for 84% of the days for the period from
2013 to 2018. The catalog contains 7149 events, 78% of which are VT
events, 20% are Nested events, and 2% are LP events, and hence these
three classes are highly unbalanced. Fig. 3 shows the distribution of
these events over time. The distributions of the VT and Nested events
4

are correlated with a much greater number of VT events than Nested
events. The LP events are evenly distributed over time, except for the
swarm of a few dozen events that occurred in April 2017. Conversely,
the distributions of the VT and Nested events are not constant over
time, and we observed a strong increase in their occurrence at the end
of 2018.
3. Processing methodology

In this section, we detail our workflow (Fig. 4) to automatically clas-
sify the three classes of events; namely, VT, Nested, and LP events. There
are several main steps involved here.
3.1. Data

Here our data consist of labeled windowed seismic waveforms. The
waveforms are extracted from the continuous signals, with the detec-
tion time and duration provided by the OVSG. These waveforms are as-
sociated with a label linked to the physical phenomenon that triggers
the event.
3.2. Pre-processing

First, we need to eliminate the poor quality signals from our dataset.
Not all of the events recorded by the network are observed well at sta-
tion TAG. We need to visually check if the events are correctly labeled,
and this is easier if the signals are strong compared to the ambient
noise. A criterionwas therefore applied to keep the signals with a signif-
icant signal-to-noise ratio at TAG. The criterion we applied was to com-
pare the mean squared amplitude of 20 s of noise recorded before the
event with the mean squared amplitude of the event considered. We
kept those signals with a signal-to-noise ratio greater than 1.5. Then,
we applied a bandpass filter between 0.8 Hz and 25 Hz to keep only
the signals related to the event. Finally, signals were normalized by



Fig. 3. Distributions (blue) and cumulative distributions (black) of the numbers of events between January 1, 2013, and December 31, 2018, for (top to bottom) volcano-tectonic (VT),
Nested, and long period (LP) events, along with the cumulative distribution of all of the classes (data from OVSG-IPGP).
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themaximumof 1.0, so that themodel can be applied to all observations
regardless of their amplitudes.

3.3. Feature calculation

The data used for learning are not the windowed waveforms, but a
set of descriptors that are extracted from the windowed waveforms.
The features are important as they carry the information related to the
classes. Here, we used the features proposed by Malfante et al. (2018a,
b). The description of the features is given in Table 1. We grouped
these into three categories, as statistical features (n = 9), entropy-
based features (n = 9), and shape descriptors (n = 16). These 34 fea-
tures were computed in three representation domains of the signal:
the temporal domain, the spectral domain, and the cepstral domain.
The cepstral domain describes the periodic properties of the signal, as
commonly used in speech processing, and it is obtained by computing
the Fourier transform of the logarithm of the signal spectrum.

Using a large number of features allows the signals to be represented
in many ways, while keeping as much of the information about the sig-
nal as possible. Another advantage of using features is to reduce the di-
mension of the data, while keeping the information contained in the
signals. Here, the input vector has a dimension of 34× 3=102,whereas
dealing with the corresponding 10-s-long waveforms sampled at
100Hzwould imply a vector size of 10× 100=1000.We do not expect
to need all of the features, as some provide redundant or useless infor-
mation; e.g., the length of the signal is the samewhatever the represen-
tation domain.

3.4. Training

The training step consists of defining the boundaries between the
different classes in the feature space. For this, the learning algorithmau-
tomatically selects the most discriminative features among the 102
5

features.We chose to train themodel from a given percentage of the la-
beled data, and we used the rest of the data to test the reliability of the
model constructed. The algorithm used here is the RF classifier, which is
available in the python scikit-learn library (sklearn.ensemble.
RandomForestClassifier).

This algorithm involved decision trees that split the parameter space
into simple regions. A decision tree (Quinlan, 1986) is an algorithmwith
a tree-like structurewhere each internal node corresponds to a test on a
subset of the features, each branch represents the outcome of the test,
and each leaf node is a class label. The random forest algorithm
(Breiman, 2001) consists of a collection of decision trees. This works
as follows:first subsets are randomly selected from the learning dataset,
then a decision tree is constructed for each subset, and a prediction re-
sult is obtained for each tree. Then, the most frequent prediction is se-
lected as the final prediction. The biggest advantage of the RF over a
single tree is that the overfitting problem is attenuated by averaging
out the predictions from all of the trees. With this algorithm, we also
gain information about the feature importance. This information is ob-
tained by computing the relevance score of each feature in the training
phase. This allowed us to reduce the number of features by selecting
only the most important. We performed a grid search in the hyper-
parameter space to determine which features were the best, andwe se-
lected the hyperparameters around which the classification score was
stable, which are given in the captions to Tables 2 and 4.
3.5. Test

To test the model, we performed cross-validation, by randomly
partitioning the labeled dataset between a training dataset and a testing
dataset. The random selection of the training dataset and the testing
dataset was performed several times, to have statistically valid results.
Due to the low number of LPs compared to the other classes, we made
sure that the number of LPs was balanced in all partitions. We can



Fig. 4. Workflow of the machine learning process. Step 1: Feature calculation step to
represent the signals. Step 2: Learning step on a given proportion of the dataset. Step 3:
Testing step to evaluate the performance of the model. Step 4: Classification step on
new, unlabeled data with a validated model, as the operational part of the process.
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modify the partition coefficient, and thus see the effects of the size of the
training set on the performance of themodel. To analyze the results, we
computed the mean confusion matrix obtained after several trials (i.e.,
at least 10) by comparing the predicted classes with the real classes of
the test dataset. We also considered three metrics: the accuracy, the
precision, and the overall accuracy:

Accuracy ¼ #GoodPredictionClassi
#TotalTrueClassi

ð1Þ

Precision ¼ #GoodPredictionClassi
#TotalPredictedClassi

ð2Þ

OverallAccuracy ¼ #GoodPrediction
#TotalEventTestDataset

ð3Þ

These metrics provide information on the specificity (i.e.,
false-positives) and sensitivity (i.e., false-negatives) of the model. If
the precision is too low, it means that there are too many bad predic-
tions compared to good ones, and thus it means there are too many
false-positive outcomes. If the accuracy is low, it means that most of
the data of a class have been badly predicted, and thus it means there
are too many false-negative outcomes. The overall accuracy gives infor-
mation on the general performance of the model.

3.6. Classification

Once the model is trained and reliable, we can apply it on a new
dataset, as either labeled or not labeled. This is the operational part of
the process, which we do not include as part of this study.

4. Results and analysis

4.1. Performance of initial classification

Here we present the performance of the automatic classification
using the three classes of events: VT, Nested, and LP events. At the
TAG station, many of the events detected did not meet the quality crite-
rion of the pre-processing step of the analysis described earlier. The
OVSG detected 7149 events over the period from 2013 to 2018, al-
though only 845 passed our selection phase. The selection phase allows
visual checking of whether the events we analyze were correctly la-
beled, and for computational reasons, it is easier to process less data.
This analysis was thus performed with 542 VT, 217 Nested, and 86 LP
events. Table 2 gives the average confusion matrix of the classification
that was obtained after 10 trials, with a ratio between the training
dataset and the testing dataset of 50:50. For each trial, we randomly se-
lected the data used for the training, and tested the model with the
remaining data.

We obtained an overall accuracy of 73%±1%, which is relatively low
compared to the scores obtained in the literature, some of which
reached up to 80% or 90%. Different ratios between the training and
the test dataset were also tested. Between the 80:20 and 30:70 ratios,
the data were almost the same, at around 73% ±1%. With more than
80% of the data for the training and less than 30% for the testing, the
overall accuracies decreased, and overfitting and underfitting problems
started to appear. We detected several trends after analysis of
these data.

The score of 73%was largely due to the size of the VT class compared
to the rest of the dataset, whichmasks the poor classification. The accu-
racy of the VT class was 93%, somost of the true VT events are well clas-
sified. However, the precision of the VT class was only 68%, which
means that some events of the VT class are also assigned to the true
Nested and LP events. In more detail, 71 of the 108 Nested events
used for the test were classified as VT events, and 16 of the 43 LP events
were classified as VT events. The bad precision of the VT class can be
6

explained in two ways. The VT class is too broad, and contains a variety
of signals that cover the characteristics of the Nested and LP events, or
on the contrary, there are signals in the LP and Nested classes that
have characteristics of the VT class.

The precision of the Nested classification was 61%, so the predicted
nested events are not reliable. The accuracy was 31%, so most of the
true Nested events are not well recognized. Indeed, 71 of the 108 true
Nested events were classified as VT events, and only 4 of the 108 were
classified as LP events.

The precision of the LP classification was 73%, which means that the
LP prediction was quite reliable, although the accuracy of 51% shows



Table 1
Features used to represent each transient signal, as the feature set from Malfante et al.
(2018).

Features Definition Ref.

Statistic features
Length n = length(s) 1
Mean μs ¼ 1

nΣis i½ � 2

Standard
deviation

σ s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1Σi s i½ �−μsð Þ2
q

3

Skewness 1
nΣi

s i½ �−μs
σ s

� �3 4

Kurtosis 1
nΣi

s i½ �−μs
σ s

� �4 5

i of central
energy

i ¼ 1
E :ΣiEi:i 6

RMS
bandwidth

Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
EΣi i

2:Ei−i
2

q
7

Mean
skewness

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σi i−ið Þ3Ei

E:B3
i

r
8

Mean kurtosis
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σi i−ið Þ4Ei

E:B4
i

r
9

Entropy
features

(with p(sj) the probability of amplitude level sj)

Shannon
entropya

−Σjp(sj)log2(p(sj)) 10 to
12

Rényi
entropyb

1
1−α ; log ;2 Σjp sj

� �α� �
13 to
18

Shape descriptors features
Rate of attack maxi

s i½ �−s i−1½ �
n

� �
19

Rate of decay maxi
s i½ �−s iþ1½ �

n

� �
20

Ratios min/mean and max/mean 21 to
22

Energy
descriptors

Signal Energy, maximum, average, standard deviation,
skewness and kurtosis

23 to
28

Specific
values

min, max, i of min, i of max, threshold crossing rate and
silence ratio

29 to
34

Note. Features computed for a signal s[i]i=1
n (in which i might correspond to a temporal,

frequency or cepstral sample). E = Σi=1
n s[i]2 and Ei = s[i]2 describe the signal energy

and the energy at sample i, respectively. Some features have a dimension greater than
others; e.g., entropy measurements are made on three different estimations of the ampli-
tude probability (i.e., different histogram bin numbers).

a Bin numbers for probability estimation: 5, 30 and 500.
b Bin numbers for probability estimation: 5, 30, 500, α = 2, inf.

Table 2
Confusionmatrix obtained with a ratio of 50:50 between the training and testing datasets
for the catalog from the OVSG for January 1, 2013, to December 31, 2018, with the model
trained using a random forest classifier (n_estimators = 100, criterion=’entropy’, boot-
strap = True, class_weight = None), mean score after 10 trials.

True class Predicted Class Accuracy (%)

VT Nested LP

VT 251 16 4 92.6
Nested 71 33 4 30.6
LP 16 5 2 51.2
Precision (%) 74.3 61.1 73.3
Overall accuracy (%) 72.5 ± 1.0
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that half of the true LP events are not well recognized by the model. Al-
most a third of thesemisclassifications of LP (16 of 43)were classified as
VT (48 of 54).

These results show that VT events can be confused with LP events
and Nested events, while Nested and LP events are rarely confused
with each other. The confusion in the classification of the VT and Nested
events was partly because the Nested events actually consisted of sev-
eral individual VT events that were separated by very short inter-
event times, such that the coda of the first signal was mixed with the
onset of the next signal. In the other cases, many VTs appeared to
7

show what looks like an emergent P-phase on the low resolution seis-
mic trace. However, upon zooming in on the waveforms in the
Seiscomp3 environment when picking phases, it was clear that this ap-
parent P-wave was a low amplitude initial VT signal that was quickly
followed by another larger amplitude VT signal with a P-phase and S-
phase. Thus, if Nested events are groups of VT signals, it is highly possi-
ble that the discrimination between these is difficult because many of
the description features of VT events are also in the Nested events.

At OVSG, the visualization tool used to manually classify events
makes this work very complicated, because the spectrograms are not
ready available to all of the operators, so some some events might
have been misclassified. This would explain the broad variety of signals
in the VT class. New visualization of the signals with a spectrogram and
new labeling based on the definition of the VT (5–20 Hz) and LP
(0.1–5 Hz) frequency domains given here appears to be necessary to
improve the performances and the reliability of the models.

4.2. Performance of the refined classification

We visually reviewed all of the 845 events, to check whether some
were misclassified andwhether we observed signals that showed char-
acteristics different from the classes of events already considered, and if
new classes should be introduced into our analysis.

After reviewing all of the signals by hand, two new classes were in-
troduced, the Hybrid class and the LPmonochromatic, or Tornillos, class
(Fig. 5). These types of eventswere considered by the observatory in the
form of a comment, but were not taken into account during the routine
daily classification work. Here we now add those two classes into our
learning step.

4.2.1. Hybrid earthquakes
Numerous detailed analyses of volcanic earthquakes during recent

eruptions (Redoubt, Lahr et al. (1994); Soufriere Hills, Miller et al.
(1998); White et al. (1998)) have shown that a distinct category of
earthquakes has spectral characteristics of both VT (or high frequency)
and LP earthquakes. These have been called Hybrid earthquakes (e.g.,
Chouet andMatoza, 2013). Typically, they have a high frequency impul-
sive arrival between 10 Hz and 20 Hz, as typical of VT earthquakes,
while the coda is dominated by lower frequency waves in the upper
range of the LP frequency spectrum (1.2–2.5 Hz, as at Redoubt, Lahr
et al. (1994) and Soufriere Hills, Montserrat, White et al. (1998)). Also,
the LP component is observed from the beginning to the end of these
events. This indicates a fluid component in the mechanism of rupture.
At La Soufrière, the Hybrid earthquakes (Fig. 5) had a lower frequency
coda, at around 5 Hz to 6 Hz, and a higher frequency onset, at around
12 Hz to 14 Hz. Various studies have sought to understand Hybrid
events. Lahr et al. (1994) proposed a model halfway between VT and
LP, with fragile fracturing processes producing high frequencies, and
then the propagation of fluid responsible for the resonance phenomena
that produces low frequencies. Neuberg et al. (2000) showed a clear
continuum between LP and Hybrid events. Harrington and Brodsky
(2007) proposed a model where a simple fracturing process with a
very slow rupture velocity was enough to explain these events.

4.2.2. LP monochromatic earthquakes
These Tornillos are a subcategory of LPs; however, their particular

waveform (which looks like a screw) makes them easily distinguish-
able. They were first described as such for Galeras Volcano (e.g.,
Gomez et Torres, 1997), and have subsequently being identified for
many eruptions. We therefore have an emerging wave arrival, with a
duration of a few tens of seconds, an almost sinusoidal signal, and a
coda that decreases very slowly, and almost linearly. Their Fourier spec-
trum has a characteristic peak, which was at around 4 Hz for La
Soufrière. On the spectrogram we saw that the resonance lasted longer
than for the LPs. A model of self-oscillations of fluid filling a cavity was
proposed as the physical process that generates Tornillos seismic signals



Fig. 5. Example of awaveform filtered between 0.8Hz and 25Hz,with the spectrogramand Fourier spectrum for Tornillo events (top) andHybrid events (bottom) recorded at station TAG
at La Soufrière de Guadeloupe, for the vertical component, for January 1, 2013, to December 31, 2018.

Table 4
Confusionmatrix obtainedwith a ratio of 50:50 between the training and testing datasets
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(Gómez, 1997; Konstantinou, 2015). In a recent experimental study,
Fazio et al. (2019) suggested that gas pressure gradients trigger the
event that regulates the slowdecay of the coda,whereasfluid resonance
in small structures controls the frequency content of the signal. This
type of event was introduced into the analysis for the observatory in
2001, but was removed from the classification routine later.

Table 3 shows the classes that were newly assigned to our catalog.
First, 89 Nested events and 15 LP events were reclassified as VT events.
Then 39 VT events and 22 Nested events were reclassified as LP events.
Only 9 VT events and 1 LP eventwere reclassified as Nested events. Also,
2 Nested events and 26 LP events were reclassified as Tornillos events.
Finally, 151 VT events, 45 Nested events, and 8 LP events were
reclassified as Hybrid events.

We note that very few of the Nested events remained in this class
(59 of 217), with a lot reclassified as VT events (89 of 217). The Nested
events are a relatively unique type of seismo-volcanic event, because
these are specific to the La Soufrière seismicity. Nothing exactly like
this type of event has been reported in the literature, so to maintain a
certain robustness in the new labeling, and not to confuse this type of
event with the VT events, we chose an explicit criterion to decide
whether these belonged to one or the other class. We considered the
events as Nested when they clearly presented several signals in the
waveform. As the reviewing of the events was carried out using only
one station, it is possible that an event clearly presents several signals
Table 3
New event classes that were manually assigned after visual review based on the wave-
form, the spectrogram, and the Fourier spectrum.

Old class New class Total

VT Nested LP Hyb Tor

VT 343 9 39 151 0 542
Nested 89 59 22 45 2 217
LP 15 1 36 8 26 86
Total 447 69 97 204 28 845

8

at one station but not at another, because these Nested signals can be
different in terms of their amplitudes and waveforms.

Whenwe created amodelwith these new classes and the same ratio
between the training dataset and the test dataset of 50:50, as previously
here, the overall accuracy increased from 73% to 82% ±2%. This shows
that this new classification was much better for the automatic process.
Furthermore, by looking at the results in detail (Table 4), we see that
the classification of certain classes was significantly improved.With dif-
ferent ratios between the training dataset and the test dataset, as 90:10,
70:30, 30:70, and 10:90, the accuracies obtained were (respectively):
83% ±4%, 83% ±2%, 82% ±1%, and 77% ±2%; i.e. they remained similar.

Then we looked at the results class by class, to analyze the errors.
These were significantly lower for the Nested class, with 68% and 79%
for the accuracy and precision, instead of the 31% and 61%, respectively,
for the previous classification. One true LP event was classified as a
Nested event, and vice versa. Five Nested events were classified as VT
and five as Hybrid. This confusion was seen when there were few
Nested signals in the event (i.e. 2 or 3) and when one of these signals
was much more energetic than the others, whereby the model
for the refined catalog for January 1, 2013, to December 31, 2018, with the model trained
using a random forest classifier (n_estimators = 100, criterion=’entropy’, boot-
strap = True, class_weight = None), mean score after 10 trials.

True class Predicted Class Accuracy (%)

VT Nested LP Hyb Tor

VT 203 2 1 18 0 90.6
Nested 5 23 1 5 0 67.7
LP 1 1 41 6 0 83.7
Hyb 25 2 7 69 0 67.0
Tor 0 1 1 0 13 86.7
Precision (%) 86.8 79.3 80.4 70.4 100
Overall accuracy (%) 82.1 ± 1.6
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recognized the energetic signal. The six events that were incorrectly
classified as Nested events were also particularly noisy events.

The Tornillos events were well classified by the model, with 100%
and 87% accuracy and precision. There was 1 true Tornillo event classi-
fied as an LP event. Once again, this kind of error in the model is easily
understandable, because the Tornillo class is a subclass of the LP class.
The biggest difference between these two classes is the longmonochro-
matic resonating coda in the Tornillos events. Depending on the shape
of the coda, we can choose to classify an event as LP or Tornillo, and
sometimes this distinction was hard tomake. The other badly classified
Tornillo was labeled as Nested by the model; it was the most noisy Tor-
nillo event of the catalog. In addition, the various tests carried out with
different sizes of training sets showed that there was no need to have a
large training database to effectively recognize the Tornillos events.

The accuracy of the predicted LP events was increased from 51% to
84%. One true VT event, one true Nested event, one true Tornillo
event, and seven true Hybrid events were classified as LP events. The
precision of the LP events was increased from 73% to 80%. One true LP
event was classified as a VT event, and one as a Nested event, with six
classified as Hybrid events. LP events can be confused with VT, Hybrid,
and Tornillo events. The confusion between the LP and VT events de-
creased a lot compared to the previous classification, with 16 LP events
of 43 classified as VT events before, and only 1 of 49 with this new
classification.

With the new calssification, the VT class showed an accuracy of 91%
and a precision of 87%. While the accuracy was slightly decreased from
93%, the precision was increased from 74% to 87%. These results show
that the variety of the signals in the previous VT class was reduced.

The hardest events to classify were the Hybrid events. The accuracy
was 67% and the precision was 70%. Hybrid events were only confused
with VT and LP events, with 25 true Hybrid events classified as VT
events, and 67 as LP events. Here, 25 predicted Hybrid events were
trueVT events, and six predictedHybrid eventswere true LP events. Hy-
brid events were more often confused with VT events than LP events.
This might be explained by the impulsive and high frequency onset of
the Hybrid events, which resulted in confusion between Hybrid and
VT events more frequently than for LP events. We saw that the Hybrid
events with a low frequency component that wasmuchmore energetic
than the high frequency component tended to be classified as LP events.
These results reinforce the idea that Hybrid events are a continuum be-
tween VT and LP events. Although the scores of the Hybrid classification
were weaker than the scores of the others classes, this is still encourag-
ing because these events are the most difficult for a human operator to
recognize.

This new classification appears to be very effective, and allowed the
automatic algorithm to distinguish the different earthquake classes
more easily than the previous classification. Moreover, two new earth-
quake classes, as Hybrid earthquakes and LP monochromatic earth-
quakes (Tornillos), were introduced to better characterize the
seismicity. There is a wealth of literature data andwell-documented ac-
tive volcanic sequences that have culminated in eruptive activity that
underscore the fundamental roles that these Hybrid earthquakes and
Tornillos earthquakes have to understand and track the complex nature
and dynamics of seismogenic processes for an active volcano.

4.3. Feature performance

Selection of the features is a decisive step to obtain good classifica-
tion results. Here, we were interested in the possibility to reduce the
number of features, while keeping the most representative features,
and also to determine which features were important for which class.
It is also possible that some features were not optimal for the classifica-
tion, if they were highly correlated. To keep the intrinsic physical prop-
erties of the features, we did not transform or project features in a new
space (e.g., with principal component analysis). RF allows determina-
tion of the weight of each feature in a classification, using the impurity
9

score. The impurity score is related to the loss of accuracy when a fea-
ture is removed. The greater the importance of a feature in the classifi-
cation, the higher the loss will be in the performance of the
classification upon its removal. However, following this method, a fea-
ture that has a low importance is not automatically meaningless, as
two features can be correlated, and only one will have a high score.
More information about the feature importance can be found in
Menze et al. (2009).

In Fig. 6, we show theweights of the 102 features for the binary clas-
sifications (i.e., each class against all of the other classes) and for the
classification with all of the classes. We can see that themost important
features changed depending on the class. The best features for recogniz-
ing all of the classes are the minimum of the signal (29), the index of
central energy (6), the maximum energy (24), the rate of attack (19),
the maximum signal (30) in the time domain, the mean kurtosis (9),
the root mean square bandwidth (7), the standard deviation in the fre-
quency domain, and the rate of decay (20) in the cepstral domain. These
nine features hadweights greater than 2% in the classification, and came
from the three representation domains (i.e., temporal, spectral, cepstral
domains), so they underscore the relevance of using these representa-
tion domains.

For the Hybrid class, the best features had lowerweight compared to
those of the best features obtained for the other classes, at 4.9% impor-
tance compared to 8.2%, 8.7%, 8.2%, and 7.5% importance for the VT
class, the Nested class, the LP class, and the Tornillo class. Also, the
best feature of the Hybrid class was less discriminant than the best fea-
ture of the other classes. This is consistent with this class being themost
difficult to classify correctly.

Among the 10 best features of the least numerous classes, as the
Nested class and the Tornillo class, there were only 3 and 1 of these fea-
tures, respectively, in common with the 10 best features of the classifi-
cation with all of the classes. This means that the most discriminant
features of a class do not necessarily have great importance in the gen-
eral classification, and this depends on the number of events in these
classes. Conversely, 7 of the 10 best features of the VT class, 6 of the
10 best features of the LP class, and 5 of the 10 best features of the Hy-
brid class were among the 10 best features of the general classification.
In particular, the maximum of energy (24) in the temporal domain was
in the 10 best features of the VT, the LP, and the Hybrid classes, and also
for the classification with all of the classes. This means that this feature
is useful to distinguish these classes from the rest of the dataset, and also
to discriminate between these three classes.

In Fig. 7, we show the mean overall accuracies obtained after 10 tri-
als of the classification using only the best feature, and then adding the
secondbest feature, and so onuntil every features has been added in the
classification analysis. With the nine best features having an individual
weight greater than 2%, the mean accuracy rapidly converged above
80% after the use of these features. To reach the mean accuracy score
of 82.1% of the full set of 102 features, the 14 best features need to be
used for the learning: after 14, adding new features did not change
the score significantly.

This set of features has already been used by Malfante et al. (2018a,
b) for Ubinas Volcano in Peru. Malfante et al. (2018a, b) obtained 84.4%
accuracy with only the three best features, and needed the 13 best fea-
tures to reach a score (90.3%) that was close to the accuracy obtained
with all of the features (92.5%). Here, we compared the 13 best features
obtained byMalfante et al. (2018a, b) with the 14 best features that we
determined in our analysis. It is interesting to note that among the 13
best features of the Ubinas Volcano analysis by Malfante et al. (2018a,
b), only one of their features was in our set of 14 best features. This
was the mean of the signal (2) in the cepstral domain. This difference
can be explained by the different type of seismic activity recorded at
Ubinas Volcano compared to the seismic activity of La Soufrière de Gua-
deloupe. The seismicity of La Soufrière Volcano was dominated by VT
and Hybrid events, whereas Ubinas Vaolcano was dominated by LP
and Tremor events. It also suggests that the model we built is specific



Fig. 6.Weigths as percentages for all of the features, for each class, and for all classes combined for the volcanic seismicity detected at La Soufrière de Guadeloupe (January 1, 2013, to
December 31, 2018; OVSG-IPGP) determined with the feature importance function in the scikit-learn library. Blue, poor importance in the classification; yellow, important for the
classification; red, the 14 most useful features with which the classification is similar to the mean score obtained for the whole feature set.
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to La Soufrière Volcano, or at least the kind of seismicity shown by La
Soufrière Volcano. It would be interesting to test the performances of
the features on a volcano with the same kind of seismicity as La
Soufrière de Guadeloupe, that is characterized by a very active and ex-
tensive hydrothermal system. Another possible explanation for the dif-
ference in the best features might be that the 14 best features obtained
at the TAG station for La Soufrière Volcano are more specific to the sta-
tion position than to the volcano itself. On the basis of the complex in-
ternal structures of volcanoes, the TAG station might show strong and
specific site effects that distort the signals (e.g., high attenuation, strong
anisotropy, waveguide effects, high density contrasts). The very small
number of events that passed the selection phase (i.e., only 845 of the
7194 detected by the OVSG met the quality criterion at station TAG) is
probably an illustration of this phenomenon.

To overcome this issue, different approaches can be used. The first
one, although not very efficient and time consuming, would be to
apply the same single-station approach to other stations at La Soufrière
Volcano and see whether the best features are identical for all of the in-
dividual stations. A second approachwould be to use amulti-station ap-
proach, using the features computed from different stations to take into
account the variability of the same signal all over the volcano, as in
Maggi et al. (2017). These authors reached their best performance by
using a combination of features from three stations. A third approach
would be to use a multi-station approach of a higher level, with multi-
station specific features. These features would be derived from signals
Fig. 7.Mean accuracies for each successive nth best feature; learning rate = 50%; model traine
False, class_weight = None), as mean score after 10 trials. Black line, mean score obtained w
from January 1, 2013, to December 31, 2018 (OVSG-IPGP).
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obtained from network-based analyses that involve data from multiple
sensors, such as cross-correlations or higher-order cross-correlations.
We could compute the features based on these cross-correlation in the
three representation domains (i.e., temporal, spectral, cepstral
domains).

5. Conclusions and prospects

We have applied an automatic classification method based on ma-
chine learning, and more specifically on a RF classifier, for the analysis
of the volcanic seismicity of La Soufrière Volcano of Guadeloupe. The
principle is based on the calculation of a large set of descriptors from
the waveforms of the volcanic seismic events that satisfy the quality
criteria. This set of descriptors, or features, is then used to train a RF clas-
sifier using all of the seismic events for their classification into themain
classes of seismic signals that have causal links to specific dynamic vol-
canic processes in the system. After training of themodel on a subset of
the seismic signals from the catalog of volcanic seismic events built by
the OVSG, we obtained a good classification rate of 73% on the subset
of seismic signals that remained to be classified. However, after a review
of the results class by class, we showed that the variability in the VT
class was too broad, and that it caused distortion for the recognition of
the two other classes. We therefore manually reviewed and relabeled
all of the events, which resulted in the addition of two new classes
that had been recognized by the observatory, but were not taken into
d using a random forest classifier (n_estimators = 100, criterion=’entropy’, bootstrap =
ith all 102 features after 10 trials, for the La Soufrière de Guadeloupe volcanic seismicity
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account during the daily classification protocol. After the introduction of
these new Hybrid and monochromatic LP (Tornillo) classes, the perfor-
mance of the automatic classification increased to 82.1%. Most of the er-
rors made by the model were due to the confusion between Hybrid
events and VTs and LPs. This result reinforces the idea that Hybrid
events are a continuum between VTs and LPs. The relatively poor scores
obtainedwith the initial automatic classifier highlighted the presence of
inaccuracies in the classification. The much improved accuracy that we
achieved after refining the classification shows that the machine learn-
inghelps to build a robust catalog of volcanic earthquake signals that are
classified into process-related classes. We explored the importance of
the features in our model to determine which features of the full set of
102 performed best for the recognition of these classes of volcanic
earthquakes at La Soufrière de Guadeloupe that characterized the pe-
riod analyzed (i.e., January 1, 2013, to December 31, 2018). We showed
which features are the most useful depending on the class we want to
recognize for La Soufrière Volcano. We also showed that with only a
subset of the features (i.e., 14 of 102), we can obtain a substantially sim-
ilar score. Finally, we compared our best features for La Soufrière Vol-
cano with the best features presented by Malfante et al. (2018a, b) for
Ubinas Volcano, and showed that the most important features are dif-
ferent (except one) between these two volcanoes. Therefore, it is im-
portant to maintain this whole feature set to test the method on
another volcano.

In the future, we will apply this methodology to data obtained from
the complete volcanic seismic network for La Soufrière, which is com-
posed of about 20 sensors, to improve the accuracy. Futhermore, it
will be interesting to repeat the exploration of these features on other
stations or for other volcanoes that have activities that are similar to
that of La Soufrière de Guadeloupe, to see if the same features are
among the most important, or at least if the same features are useful
for the same classes of volcanic seismic events. More importantly, by
training a classification model on a specific time period for La Soufrière
Volcano or any volcano and applying this to a subsequent time period, it
will be possible to detect any changes in the nature, dynamics, and/or
patterns of seismicity by quantifying and following with time the pro-
gressive or rapid loss in accuracy of the classification algorithm. This ap-
proach was reported by Hibert et al. (2017) at Piton de la Fournaise
Volcano, and by Malfante et al. (2018a, b) at Ubinas Volcano. We will
test this at La Soufrière Volcano to monitor for any changes in the pat-
tern of seismicity that preceded the major unrest phase of January to
April 2018 (Moretti et al., 2020) with the seismicity that has been re-
corded from after April 2018 that showed characteristic swarm activity
of numerous low-energy events (OVSG-IPGP, 1999–2020). It will be
possible to test whether all swarms show similar patterns, or whether,
as qualitatively observed, some swarms are dominated by certain clas-
ses of events, and also whether this pattern changes within the swarm.

In this paper, we have proposed a new machine learning classifica-
tion scheme that is based on direct human examination and analysis
of each signal. It is fundamental to test the performance of a supervised
classification using themachine learning algorithms to discriminate the
different signals. Our final goal is to implement this model in the OVSG
in Guadeloupe, and also to test it for other active volcanoes that are
monitored by IPGP, such as Montagne Pelée in Martinique (OVSM-
IPGP, 2020), and even in the context of the major submarine eruption
offshore of Mayotte that has been ongoing since 2018 (REVOSIMA,
2019–2020).

Our results show that these machine learning tools can represent a
major component of any volcanic monitoring system for an active vol-
cano. By providing rapidly significant real-time insight into the nature,
style, and patterns of seismicity at active volcanoes in a state of unrest
while optimizing human resources, these tools will allow scientists to
gain access to new knowledge to understand and track the complex na-
ture and dynamics of the nonlinear processes of active volcanoes.
Hence, this approach contributes to improved forecasts of the likelihood
of future eruptive activity, and to improve the societal responses to
11
crises and risk mitigation in a context of increasing exposed assets and
vulnerability.
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