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S U M M A R Y
In order to solve a highly non-linear problem by introducing the smallest a priori information,
we present a new inverse technique called the ‘roller coaster’ technique and apply it to measure
surface wave mode-branch phase velocities. The fundamental mode and the first six overtone
parameter vectors, defined over their own significant frequency ranges, are smoothed average
phase velocity perturbations along the great circle epicentre–station path. These measurements
explain well both Rayleigh and Love waveforms, within a maximum period range included
between 40 and 500 s. The main idea of this technique is to first determine all possible
configurations of the parameter vector, imposing large-scale correlations over the model space,
and secondly to explore each of them locally in order to match the short-wavelength variations.
The final solution which achieves the minimum misfit of all local optimizations, in the least-
squares sense, is then hardly influenced by the reference model. Each mode-branch a posteriori
reliability estimate turns out to be a very powerful instrument in assessing the phase velocity
measurements. Our Rayleigh results for the Vanuatu–California path seem to agree correctly
with previous ones.
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1 I N T RO D U C T I O N

Over the last two decades, the resolution of global tomographic models has been greatly improved, because of the increase in the amount
and the quality of data, and due to more and more sophisticated data processing and inversion schemes (Woodhouse & Dziewonski 1984,
1986; Montagner 1986; Nataf et al. 1986; Giardini et al. 1987; Montagner & Tanimoto 1990; Tanimoto 1990; Zhang & Tanimoto 1991;
Su et al. 1994; Li & Romanowicz 1995; Romanowicz 1995; Trampert & Woodhouse 1995; Laske & Masters 1996; Ekström et al. 1997;
Grand et al. 1997; van der Hilst et al. 1997; Liu & Dziewonski 1998; Ekström & Dziewonski 1998; Laske & Masters 1998; Mégnin &
Romanowicz 2000; Ritsema & van Heijst 2000, among others). These models are derived from surface wave phase velocities and/or body
wave traveltimes (or waveforms) and/or free-oscillation splitting measurements. Body wave studies provide high-resolution models but suffer
from the inhomogeneous distribution of earthquakes and recording stations, even when considering reflected or diffracted phases. On the
other hand, the surface wave fundamental mode is mainly sensitive to the physical properties of the upper mantle. So, the investigation of the
transition zone on a global scale, which plays a key role in mantle convection, can only be achieved by using higher-mode surface waves.

A first attempt at providing a global tomographic model using these waves has been proposed by Stutzmann & Montagner (1994), but
with a limited amount of data. More recently, van Heijst & Woodhouse (1999) computed degree-12 phase velocity maps of the fundamental
mode and the four first overtones for both Love and Rayleigh waves. These data have been combined with body wave traveltimes measurements
and free-oscillation splitting measurements, to provide a global tomographic model with a high and uniform resolution over the whole mantle
(Ritsema et al. 1999; van Heijst et al. 1999). The most recent SH model for the whole mantle was proposed by Mégnin & Romanowicz
(2000). This degree-24 model results from waveform inversion of body and surface Love waves, including fundamental and higher modes
and introducing cross-branch coupling.

Extracting information from higher-mode surface waves is a difficult task. The simultaneous arrivals (Fig. 3 in Section 3) and the
interference between the different mode-branches make the problem very underdetermined and non-linear. To remove the non-linearity, Cara
& Lévêque (1987) and Lévêque et al. (1991) compute the cross-correlogram between the data and monomode synthetic seismograms and

∗Now at: École Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.

C© 2003 RAS 289



September 8, 2003 9:9 Geophysical Journal International GJI˙2041
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invert the amplitude and the phase of the filtered cross-correlogram. On the other hand, Nolet et al. (1986) and Nolet (1990) use an iterative
inverse algorithm to fit the waveform in the time domain and increase the model complexity within the iterations. These two methods provide
directly a 1-D model corresponding to an average epicentre–station path. They were first used ‘manually’, which limited the amount of data
that could be processed. The exponential increase in the amount of good-quality broad-band data has made necessary the automation of most
parts of the data processing and an automatic version of these methods has been proposed by Debayle (1999) for the waveform inversion
technique of Cara & Lévêque (1987) and by Lebedev (2000) and Lebedev & Nolet (2003) for the partition waveform inversion.

Stutzmann & Montagner (1993) split the inversion into two steps; at each iteration, a least-squares optimization to measure phase
velocities is followed by an inversion to determine the 1-D S-wave velocity model, in order to gain insight into the factors that control the
depth resolution. They retrieve the phase velocity for a set of several seismograms recorded at a single station and originating from earthquakes
located in the same area in order to improve the resolution. Another approach has been followed by van Heijst & Woodhouse (1997) who
proposed a mode-branch stripping technique based on monomode cross-correlation functions. Phase velocity and amplitude perturbations
are determined for the most energetic mode-branch, the waveform of which is then subtracted from the seismogram in order to determine the
second most energetic mode-branch phase velocity and amplitude perturbations, and so on. More recently, Yoshizawa & Kennett (2002) used
the neighbourhood algorithm (Sambridge 1999a,b) to explore the model space in detail and to obtain directly a 1-D velocity model which
achieves the minimum misfit. It is difficult to compare the efficiency of these methods because they all follow different approaches to taking
account of the non-linearity of the problem. Up to now, it has only been possible to compare tomographic results obtained using these different
techniques.

In this paper, we introduce a new semi-automatic inverse procedure, the ‘roller coaster’ technique (owing to the shape of the misfit
curve displayed in Fig. 6b in Section 3.4.1), to measure fundamental and overtone phase velocities both for Rayleigh and Love waves. This
method can be applied either to a single seismogram or to a set of seismograms recorded at a single station. To deal with the non-linearity
of the problem, the roller coaster technique combines the detection of all possible solutions at a large scale (which means solutions of large-
wavelength variations of the parameter vector over the model space), and local least-squares inversions close to each of them, in order to match
small variations of the model. The purpose of this article is to present an inverse procedure that introduces as little a priori information as
possible in a non-linear scheme. So, even using a straightforward phase perturbation theory, we show how this algorithm detects and converges
towards the best global misfit model. The roller coaster technique is applied to a path average theory but can be later adapted and used with a
more realistic wave propagation theory. One issue of this study is to provide a 3-D global model which does not suffer from strong a priori
constraints during the inversion and which then can be used in the future as a reference model.

We describe hereafter the forward problem and the non-linear inverse approach developed for solving it. An essential asset of this
technique is to provide quantitative a posteriori information, in order to assess the accuracy of the phase velocity measurements. Resolution
tests on both synthetic and real data are presented for Love and Rayleigh waves.

2 F O RWA R D P RO B L E M

Following the normal-mode summation approach, a long-period seismogram can be modelled as the sum of the fundamental mode (n = 0)
and the first higher modes (n ≥ 1), hereafter referred to as FM and HM, respectively. Eigenfrequencies and eigenfunctions are computed
for both spheroidal and toroidal modes in a 1-D reference model, PREM (Dziewonski & Anderson 1981) in our case. Stoneley modes are
removed, then the radial order n for the spheroidal modes corresponds to Okal’s classification (Okal 1978). In the following, all possible sorts
of coupling between toroidal and spheroidal mode-branches (Woodhouse 1980; Lognonné & Romanowicz 1990; Deuss & Woodhouse 2001)
and off-great-circle propagation effects (Woodhouse & Wong 1986; Laske & Masters 1996) are neglected.

For a given recorded long-period seismogram, the corresponding synthetic seismogram is computed using the formalism defined by
Woodhouse & Girnius (1982). In the most general case, the displacement u, corresponding of the first surface wave train, in the time domain,
can be written as

u(r, t) = 1

2π

∫ +∞

−∞

n∑
j=0

A j (r, ω) exp[i� j (r, ω)] exp(iωt) dω, (1)

where r is the source–receiver spatial position, ω is the angular frequency and where Aj and � j represent the amplitude and the phase of the
jth mode-branch, respectively, in the frequency domain. In the following, the recorded and the corresponding synthetic seismogram spectra
(computed in PREM) are denoted by (R) and (S), respectively.

In the Fourier domain, following Kanamori & Given (1981), a recorded seismogram spectrum can be written as

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

Bj (r, ω) exp

[
i

(
� j (r, ω) − ωa�

C (R)
j (r, ω)

)]
, (2)

where a is the radius of the Earth, � is the epicentral distance (in radians) and C (R)
j (r, ω) is the real average phase velocity along the epicentre–

station path of the jth mode-branch, which we wish to measure. The term Bj(r, ω) includes source amplitude and geometrical spreading,
whereas �j (r, ω) corresponds to the source phase. The instrumental response is included in both terms and this expression is valid for both
Rayleigh and Love waves. The phase shift due to the propagation in the real medium then resides in the term exp [−iωa�/C (R)

j (r, ω)].
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Figure 1. Illustration of possible 2π phase jumps over the whole frequency range (dashed lines) or localized around a given frequency (dotted line). The
reference phase velocity used to compute these three curves is represented as a solid line.

Considering that, to first order, the effect of a phase perturbation dominates over that of the amplitude perturbation (Li & Tanimoto
1993), and writing the real slowness as a perturbation of the synthetic slowness (computed in the 1-D reference model), eq. (2) becomes

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

A(S)
j (r, ω) exp

{
i

[
� j (r, ω) − ωa�

C (S)
j (ω)

− χ

]}
, (3)

where

χ = ωa�

(
1

C (R)
j (r, ω)

− 1

C (S)
j (r, ω)

)
. (4)

Let us now denote by p j (r, ω), the dimensionless parameter vector of the jth mode-branch defined by

p j (r, ω) = C (R)
j (r, ω) − C (S)

j (ω)

C (R)
j (ω)

. (5)

Finally, introducing the synthetic phase �
(S)
j (r, ω), as the sum of the source phase and the phase shift due to the propagation in the reference

model, the forward problem can be expressed as

d = g(p),

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

A(S)
j (r, ω) exp

{
i

[
�

(S)
j (r, ω) + ωa�

C (S)
j (ω)

p j (r, ω)

]}
.

(6)

For practical reasons, the results presented in this paper are computed following a forward problem expression based on phase velocity
perturbation expanded to third order (eq. A5). When considering an absolute perturbation range lower than 10 per cent, results are, however,
identical to those computed following eq. (6) (see Appendix A).

Formally, eq. (6) can be summarized as a linear combination of complex cosines and sines and for this reason, a 2π undetermination
remains for every solution. For a given parameter p j (r, ω), it is obvious that two other solutions can be found by a 2π shift such as

p+
j (r, ω) = p j (r, ω) + 2πC (S)

j (ω)

ωa�
and p−

j (r, ω) = p j (r, ω) − 2πC (S)
j (ω)

ωa�
. (7)

As an example of this feature, all the phase velocity curves presented in Fig. 1 satisfy eq. (6). This means that 2π phase jumps can occur over
the whole frequency range but can also be localized around a given frequency. Such an underdetermination as expressed in eq. (6) and such a
non-unicity, in most cases due to the 2π phase jumps, are often resolved by imposing some a priori constraints in the inversion. A contrario,
the roller coaster technique explores a large range of possible solutions, with the smallest a priori as possible, before choosing the model that
achieves the minimum misfit.

3 D E S C R I P T I O N O F T H E RO L L E R C OA S T E R T E C H N I Q U E

The method presented in this paper is a hybrid approach, combining detection of all possible large-scale solutions (which means solutions of
long-wavelength configurations of the parameter vector) and local least-squares optimizations starting from each of these solutions, in order
to match the short-wavelength variations of the model space. The different stages of the roller coaster technique are presented in Fig. 2 and
described hereafter. The first three stages are devoted to the reduction of the problem underdetermination, while the non-linearity and the
non-unicity are taken into account in the following steps.
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Selection of events, mode-branches and time windowsStage 1

Clustering the eventsStage 2

Determination of the model space dimension by selecting, for eachStage 3
of the mode-branches, significant amplitude frequency range

Exploration of the model space and detectionStage 4
of all possible solutions at very large scale

Selection of the “best” large scale solution as starting model
and computation of and prior covariance operators
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2
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Comparison of all best misfit function images previously stored
and selection of the output phase velocities

Computation of the a posteriori covariance operatorStage 6

Figure 2. Schematic diagram of the roller coaster technique. See Section 3 for details.

3.1 Selection of events, mode-branches and time windows

Events with epicentral distances larger than 55◦ and shorter than 135◦ are selected. Thus, the FM is well separated in time from the HM (Fig. 3),
and the first and the second surface wave trains do not overlap. Since the FM signal amplitude is much larger than the HM amplitude for about
95 per cent of earthquakes, each seismogram (real and synthetic) is temporally divided into two different time windows, corresponding to the
FM and to the HM parts of the signal. An illustration of this amplitude discrepancy in the time domain is displayed in Fig. 3(b) and when
focusing on Fig. 4(a), the spectrum amplitude of the whole real signal (FM+HM) is largely dominated by the FM one. Eight different pickings
defining the four time windows, illustrated in Fig. 3(a), are computed using synthetic mode-branch wave trains and are checked manually. For
this reason, this method is not completely automated, but this picking step is necessary to assess the data quality and the consistency between
recorded and synthetic seismograms. In Appendix B, we show that the phase velocity measurements are not significantly affected by a small
change in the time window dimensions. An advantage of this temporal truncation is that, whatever the amplitude of the FM, the HM part of
the seismograms can always be treated. Hence, the forward problem is now split into two equations, corresponding to the FM and to the HM
parts, respectively.

A(R)
FM(r, ω) exp

[
i�(R)

FM(r, ω)
] = A(S)

0 (r, ω) exp

{
i

[
�

(S)
0 (r, ω) + ωa�

C (S)
0 (ω)

p0(r, ω)

]}
(8)

and

A(R)
HM(r, ω) exp

[
i�(R)

HM(r, ω)
] =

6∑
j=1

A(S)
j (r, ω) exp

{
i

[
�

(S)
j (r, ω) + ωa�

C (S)
j (ω)

p j (r, ω)

]}
. (9)

Seismograms (real and synthetic) are bandpass filtered between 40 and 500 s. In this frequency range, only the first six overtone phase
velocities can be efficiently retrieved. Tests on synthetic seismograms (up to n = 15) with various depths and source parameters have shown
that the HM for n ≥ 7 have negligible amplitudes in the selected time and frequency windows.
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Figure 3. (a) Real vertical seismogram (solid line) and its corresponding synthetic computed in PREM (dotted line). The earthquake underlying this waveform
occurred on 1993 September 4 in Afghanistan (36◦N, 70◦E, depth of 190 km) and was recorded at the CAN GEOSCOPE station (Australia). The epicentral
distance is estimated at around 11 340 km. Both waveforms are divided into two time windows corresponding to the higher modes (T1–T2, T5–T6) and to
the fundamental mode (T3–T4, T7–T8). (b) The contribution of each synthetic monomode shows the large-amplitude discrepancy and time delay between the
fundamental mode and the overtones. The different symbols refer to the spectra displayed in Fig. 4.

3.2 Clustering the events

Following eq. (8), a single seismogram is sufficient to measure the FM phase velocity, whereas for the HM (eq. 9) the problem is still highly
underdetermined since the different HM group velocities are very close. This can be avoided by a reduction of the number of independent
parameters considering mathematical relations between different mode-branch phase velocities. The consequence of such an approach is to
impose a strong a priori knowledge on the model space, which may be physically unjustified. Another way to reduce this underdetermination
is to increase the amount of independent data while keeping the parameter space dimension constant. Therefore, all sufficiently close events
are clustered into small areas, and each individual ray path belonging to the same box is considered to give equivalent results as a common ray
path. This latter approach was followed by Stutzmann & Montagner (1993), but with 5 × 5 deg2 boxes independently of epicentral distance
and azimuth values, due to the limited number of data. Here, in order to prevent any bias induced by the clustering of events too far away from
one to another, and to be consistent with the smallest wavelength, boxes are computed with a maximum aperture angle of 2◦ and 4◦ in the
transverse and longitudinal directions, respectively ( Fig. 5), with respect to the great circle path. The boxes are computed in order to take into
account as many different depths and source mechanisms as possible. The FM phase velocity inversion is performed for each path between
a station and a box, whereas the HM phase velocities are only measured for the boxes including three or more events. Since only the six first
mode-branches spectra are inverted, the maximum number of events per box is set to eight. The use of different events implies average phase
velocity measurements along the common ray paths which can be unsuitable for short epicentral distances, but increases the accuracy of the
results for the epicentral distances considered.
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Figure 4. (a) The normalized amplitude spectra of the whole real waveform (solid line) displayed in Fig. 3(a). The real FM part of the signal (truncated
between T3 and T4) is represented as a dotted line and the real HM part (between T1 and T2) as a dashed line. (b). The solid line corresponds to the normalized
spectrum amplitude of the real signal truncated between T3 and T4 (Fig. 3a). The corresponding synthetic FM is represented as a dotted line and only the
frequency range represented by the white circles is selected as being significant. (c) Selection of HM inversion frequency ranges using synthetic significant
amplitudes. The solid line corresponds to the real HM signal, picked between T1 and T2 (Fig. 3a). For each mode-branch (dotted lines), only the frequency
ranges defined by the symbols (according to Fig. 3b) are retained for the inversion. (d) Close up of the sixth synthetic overtone, in order to visualize the presence
of lobes and the weak contribution frequency range in the spectrum amplitude. The stars delimit the selected frequency range.

3.3 Determination of the model space dimension

Real and synthetic amplitude spectra are normalized in order to minimize the effects due to the imprecision of source parameters and of
instrumental response determination. As presented in Fig. 4, a synthetic mode-branch spectrum is frequently composed by several lobes
due to the source mechanism. Between each lobe and also near the frequency range edges due to the bandpass filter, the amplitude strongly
decreases down to zero, and therefore phase velocities are absolutely not constrained at these frequencies. It is around these frequencies that
possible local 2π phase jumps may occur (Fig. 1). Then, we decide to reduce the model space dimension in order to take into account only
well-constrained points. For each spectrum, the selection of significant amplitudes, with a threshold fixed to 10 per cent of the mean maximum
spectra amplitude, defines the inverted frequency range. In the case of several lobes in a synthetic mode-branch amplitude spectrum, only
the most energetic one is selected as shown in Figs 4(c) and (d). For a given mode-branch, the simultaneous use of different earthquakes
implies a discrimination criterion based upon a mean amplitude spectrum of all spectra, which tends to increase the dimensions of the
significant frequency range. The normalization and this selection of each mode-branch significant amplitudes is also a way to include surface
wave radiation pattern information in the procedure. Changes in source parameters can result in changes in the positions of the lobes in the
mode-branch amplitude spectra over the whole frequency range (40–500 s). In the future, it will be essential to include these possible biases
in the scheme and then to simultaneously invert moment tensor, location and depth.
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Figure 5. Geographical distribution of inversion boxes for the SSB GEOSCOPE station case. The enlarged area is defined by the bold square in the inset
(South America). Black stars denote epicentres and hatched grey boxes join each inversion group. Each common ray path (grey lines) starts from the barycentre
(circles) of all events belonging to the same box. The maximum number of seismograms per box is fixed at eight.

3.4 Exploration of the model space at very large scale

The main idea of this stage is to test a large number of phase velocity large-scale perturbations with the view of selecting several starting
vectors for local inversions (see Section 3.5). The high non-linearity of the problem is mainly due to the possible 2π phase jumps. And, even
though the previous stage (see Section 3.3) prevents the shifts inside a given mode-branch phase velocity curve, 2π phase jumps over the
whole selected frequency range are still possible. For this reason a classical gradient least-squares optimization (Tarantola & Valette 1982a) is
inadequate. In a highly non-linear problem, a least-squares inversion only converges towards the best misfit model that is closest to the starting
model and the number of iterations cannot change this feature. On the other hand, a complete exploration of all possible configurations in the
parameter space is still incompatible with a short computation time procedure. Therefore, an exploration of the model space is performed at
very large scale, in order to detect all possible models that globally explain the data set well.

3.4.1 Fundamental mode case

When considering a single mode-branch, the number of parameter vector components is rather small. The FM large-scale exploration can
then be more detailed than in the HM case. Considering that, at low frequencies, data are correctly explained by the 1-D reference model, the
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a

b

Figure 6. (a) Five examples of the FM parameter vector configurations during the exploration of the model space at large scale corresponding to α values equal
to −5, −, 0, +2.5 and +5 per cent. The selected points for which the phase velocity is measured (see Section 3.3) are ordered into parameter vector components
according to increasing frequency values. The first indices then correspond to the low-frequency components (LF) and the last ones to the high-frequency (HF)
components. Varying the exploration factor α, different perturbation shapes are then modelled and the misfit between data and the image of the corresponding
vector is measured (represented in the figure below). (b) The misfit in the FM case, symbolized by +, is the expression of the difference between data and
the image of the tested model (referred to as pα) through the g function (eq. 8). The α values are expressed as a percentage with respect to the PREM. As
an example, the five stars correspond to the misfit values of the five models represented in the figure above. The circles represent the best α values and the
corresponding vectors are then considered as possible starting models for the next stage.

dimensionless phase velocity perturbation (referred to as pα) can be modelled as shown in the five examples displayed in Fig. 6(a). Basically,
the low-frequency component perturbations are smaller than the high-frequency ones. However, if such an assumption cannot be made, the
simplest way to explore the model space is then by fixing an equal α perturbation value for all the components. The main idea is to impose
strong correlations between all the components in order to estimate how high the non-linearity is.

Varying α enables one to compute different parameter vectors and solving eq. (8) to measure the distance between data and the image
of a given model through the g function, integrated over the whole selected frequency range. Considering that only small perturbations can
be retrieved, the exploration range is limited between −5 and +5 per cent, using an increment step of 0.1 per cent. The result of such an
exploration is displayed in Fig. 6(b) and clearly illustrates the high non-linearity and non-unicity of the problem. In a weakly non-linear
problem, the misfit curve (referred to as ||d − g(pα)||) should exhibit only one minimum. This would indicate that, whatever the value of the
starting model, a gradient algorithm always converges towards the same final model, the solution is then unique. In our case, Fig. 6(b) shows
that, when choosing the reference model (i.e. α = 0 per cent) as the starting model, a gradient least-squares optimization converges to the
nearest best-fitting solution (corresponding to the third circle), and could never reach the global best-fitting model (in this example represented
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by the fourth circle). Therefore, in order not to a priori limit the inversion result around a given model, all minima of the misfit curve (Fig. 6b)
are detected and the corresponding vectors are considered as possible starting models for local optimizations (see Section 3.5).

3.4.2 Higher-mode case

The introduction of several mode-branches simultaneously is much more difficult to treat and it becomes rapidly infeasible to explore the
model space as accurately as performed for the FM. However, a similar approach is followed. In order to preserve a low computation time
procedure, the increment step of α is fixed at 1 per cent. The different parameter vectors are computed as previously explained in Section
3.4.1 (the shape of each mode-branch subvector is the same as the examples displayed in Fig. 6a). In order to take into account any possible
influence of one mode-branch on another, all combinations are tested systematically. Three different explorations of the model space are
performed within three different research ranges: [−4.5 to +1.5 per cent], [−3 to +3 per cent] and [−1.5 to +4.5 per cent]. For each of them,
76 possibilities of the parameter vector are modelled and the misfit between data and the image of the tested vector through the g function is
computed. This approach is almost equivalent to performing a complete exploration in the range [−4.5 to +4.5 per cent], using a step of 0.5 per
cent, but less time consuming. Finally, all misfit curve minima are detected and, according to a state of null information concerning relations
between each mode-branch phase velocities, all the corresponding vectors are retained as possible starting models. Thus, any association
between each starting model subvectors is allowed.

3.5 Matching the short-wavelength variations of the model

In this section, algorithms, notation and comments are identical for both FM and HM. Only the main ideas of the least-squares criterion are
outlined. A complete description of this approach is given by Tarantola & Valette (1982a,b) and by Tarantola (1987). Some typical features
related to the frequency/period duality are also detailed.

3.5.1 The gradient least-squares algorithm

The main assumption which leads us to use such an optimization is to consider that starting from the large-scale parameter vector (see
Section 3.4), the non-linearity of the problem is largely reduced. Hence, to infer the model space from the data space, a gradient least-squares
algorithm is performed (Tarantola & Valette 1982a). The expression of the model (or parameter) at the kth iteration is given by

pk = p0 + Cp · GT
k−1 · [

Cd + Gk−1 · Cp · GT
k−1

]−1 · [
d − g(pk−1) + Gk−1 · (pk−1 − p0)

]
, (10)

where Cp and Cd are the a priori covariance operators on parameters and data, respectively, p0 the starting model, and where Gk−1 =
∂g(pk−1)/∂pk−1 is the matrix of partial derivatives of the g function established in eqs (8) and (9). The indices related to p are now expressing
the iteration rank and no longer the mode-branch radial order. Defining the kth image of the misfit function by

S(pk) = 1

2

{
[g(pk) − d]T · C−1

d · [g(pk) − d] + (pk − p0)T · C−1
p · (pk − p0)

}
, (11)

the maximum-likelihood point is defined by the minimum of S(p). Minimizing the misfit function is then equivalent to finding the best
compromise between decreasing the distance between the data vector and the image of the parameter vector through the g function, in the
data space on one hand (first part of eq. 11), and not increasing the distance between the starting and the kth model on the other hand (second
part of eq. 11), following the covariances defined in the a priori operators on the data and the parameters.

3.5.2 A priori data covariance operator

The a priori covariance operator on data, referred to as Cd, includes data errors and also all effects that cannot be modelled by the g function
defined in eq. (8) and (9). The only way to really measure each data error and then to compute realistic covariances in the data space, would be
to obtain exactly the corresponding seismogram in which the signal due to the seismic event is removed. Hence, errors over the data space are
impossible to determine correctly. In order to introduce as little a priori information as possible, the Cd matrix is computed with a constant
value of 0.04 (including data and theory uncertainties) for the diagonal elements and zero for the off-diagonal elements. In other words, this
choice means that the phase velocity perturbations are expected to explain at least 80 per cent of the recorded signal.

3.5.3 A priori parameter covariance operator

In the model space, the a priori covariance operator on parameters, referred to as Cp, controls possible variations between the model vector
components for a given iteration k (eq. 10), and also between the starting and the kth model (eq. 11). Considering that the phase velocity
perturbation between two adjoining components (which are ordered according to increasing frequency values) of a given mode-branch do not
vary too rapidly, Cp is a non-diagonal matrix. This a priori information reduces the number of independent components and then induces
smoothed phase velocity perturbation curves. A typical behaviour of our problem resides in the way the parameter space is discretized. In
the matrix domain, the distance between two adjoining components is always the same, whereas, as the model space is not evenly spaced
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a b

Figure 7. Illustration of two prior covariance operators on parameters. (a) The x and y axes represent the FM parameter vector component indices. As mentioned
in Fig. 6(a) the first components correspond to the low-frequency values and the last ones to the high-frequency values. (b) In the HM case, the parameter vector
is composed of the six selected frequency ranges ordered end to end, according to increasing frequency values inside each subvector. The number of parameter
vector components is then equal to the number of mode-branches considered multiplied by the number of selected frequencies for each of them. The x and
y axes represent the HM parameter vector component indices. In order not to impose mathematical relations between overtone phase velocities, correlations
between two different mode-branch parameter subspaces are fixed to zero.

in the period sense, it differs when considering two frequencies next to each other. Thus, for a given mode-branch subvector, choosing a
classical Gaussian distribution (defined by the component indices) as a covariance matrix over the model space leads to not imposing on
the phase velocity perturbations the same physical a priori information over the whole frequency range. Consequently, the first components
(low-frequency values) are strongly correlated, whereas the last ones (high-frequency values) are not correlated.

To avoid this feature, due to our choice to work in the spectral domain, and to impose the same physical a priori information over the
whole model space, the correlation lengths are computed in terms of distance in the frequency (or period) sense. Thus, the a priori covariance
operator on parameters is positive definite and expressed as

Cpi j = M exp

[
−1

2

(i − j)2

σ 2
i j

]
, (12)

where M is the maximum variance value authorized between two given components i and j. The only difference with respect to a classical
Gaussian distribution resides in the expression of the correlation length σ i j (or standard deviation). Let us denote by νi , the value of the ith
frequency value and ξ as a frequency (or period) ratio. The standard deviation is defined as

σi j = (νi + ν j )

2ξ (νi+1 − νi )
. (13)

Practically, the M value is set to 0.0025 and the ξ frequency ratio to 0.5 (see Fig. 7a for the FM case). This means that, for each iteration, the
phase velocity perturbations are expected within 5 per cent of the previous iteration value and for a given component, the correlation length
is always equal to the half of the considered period value. This choice is consistent with the weak phase velocity perturbation assumption (see
Section 2) and the large-scale exploration (see Section 3.4). These a priori constraints condition the inversion but do not limit the solution
range, in the strict sense. If the data impose it, the model can get out of this expected domain but, consequently, the second part of the
misfit value (eq. 11) is greatly increased, whereas the first part decreases. The role of such an approach is to keep as far as possible a good
balance between the two terms defining the image of the misfit function (eq. 11). In the case of HM, in order to be consistent with the no a
priori large-scale exploration of the model space, correlations between two different mode-branch components are fixed to zero, as shown in
Fig. 7(b).

3.5.4 Multiple local optimizations

As summarized in Fig. 2, the vector corresponding to the best large-scale solution is used as a starting model to perform the first least-
squares optimization. For example, in the FM case, it corresponds to the model that underlies the solution represented by the fourth circle
in Fig. 6(b). Technically, the matrix inversion (eq. 10) is performed using a singular-value decomposition. Effectively, as the selection of
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the significant frequency ranges is based on the synthetic amplitude spectra, it is possible that some parameter vector components are not
correctly constrained. The real mode-branch amplitude spectra that do not necessarily match the synthetic and unresolved parts of the vector
can then influence the well-constrained components. At each iteration k, the image of the corresponding model through the misfit function is
determined. Optimizations stop when |S(pk – S(pk+1)| ≤ ε is reached (with ε sufficiently small), and the last misfit value is stored. As we have
already mentioned, a 2π phase skip can still remain over the whole frequency range of the measured phase velocity curves. For this reason,
a new least-squares optimization is performed, this time starting from another previously selected model (for example, in the FM case, the
model corresponding to the solution represented by the third circle in Fig. 6b). In the HM case, the large-scale model is composed of six
subvectors and a difference of one of these is enough to induce several different phase velocity curves. At the end of each optimization, the
corresponding misfit is stored, and a new inversion is performed for each of the starting models that have not yet been tested. For example,
for the HM, the maximum number of local optimizations that is required in order to test all possible influences of one overtone on another, is
26, if the large-scale exploration detects two possible starting models for each of the six mode-branches.

Finally, the global best-fitting model corresponds to the solution that achieves the minimum of all local smallest misfit values previously
determined. This detailed examination of all large-scale possibilities is a way to combine least-squares optimizations, leading by some a priori
information and a non-linear exploration, in order not to limit the solution around the reference model. Such a technique produces a robust
and well-fitting solution.

3.6 Estimation of the phase velocities reliability

A very important part of measuring higher-mode phase velocities is to assess their reliability. For each mode-branch, the significant frequency
range is determined using the reference model (see Section 3.3), it is then essential to post-validate this frequency domain and also the phase
velocity accuracies themselves. When dealing with the high non-linearity of the inverse problem for the whole model space, as performed by
van Heijst & Woodhouse (1997), linear assessments are limited to computing final model errors. However, in our case, when choosing one
of the vectors detected during the large-scale exploration as a starting model, the least-squares optimization conditions are supposed to be
locally fulfilled. Thus, following the expression stated by Tarantola (1987), the a posteriori covariance operator is defined as

Cpp = Cp − Cp · GT
k−1 · M−1 · Gk−1 · Cp, with M = [

Cd + Gk−1 · Cp · GT
k−1

]
, (14)

where k denotes the last iteration. To perform the M matrix inversion, a classical algorithm is used, in order to really take into account all of the
parameter vector components. The a posteriori uncertainties on each component are then given by the square root of the Cpp diagonal elements.
Therefore, this reliability estimation combines, for each mode-branch, information concerning the relevance of the selected frequency range
with the accuracy of the phase velocity measurements.

Another criterion of the a posteriori reliability estimate can be performed by shifting the synthetic seismograms following eq. (6), and
then measuring, in the time domain, the waveform differences with the data. However, the phase velocities are determined over different
frequency ranges depending on each mode-branch. So, the phase shift can only be achieved in these different frequency domains, which
then can induce some artefacts in the time domain. Moreover, as several data are taken into account simultaneously, the shifted synthetic
seismograms are rather ‘mean’ traces corresponding to the common ray path (see Section 3.2), rather than a series of seismograms that can

Figure 8. Different 1-D synthetic models, perturbed from the PREM, used for synthetic tests presented in Sections 4.2 and 4.3. Please refer to the Section 4.1
for details.
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be directly compared one by one with each data point. For these reasons the reconstructed seismograms are qualitatively compared with the
data, but the difference is not quantitatively measured. Only the variances given by eq. (14) are retained to a posteriori estimate the reliability
of the measured phase velocities.

4 R E S O L U T I O N T E S T S U S I N G S Y N T H E T I C DATA

In order to validate the roller coaster technique previously described, many synthetic tests have been performed. Only the results of four
inversions using synthesized seismograms in atypical models are presented in this section.

4.1 Synthetic models

Three different models are used to synthesize data. They are displayed in Fig. 8 and detailed in the following. The S-wave velocity perturbations
are applied both on SV and on SH waves.

(A) In model A, P and S PREM wave velocities are roughly reduced by 3 and 4 per cent, respectively, between 50 and 400 km depth.
(B) To simulate a deeper anomaly, the second model, hereafter referred to as model B, is identical to PREM except between 400 and

700 km depth. Within this range the S PREM wave velocity is roughly increased by 4 per cent.
(C) Model C is more complex. In the first anomaly, located between 80 and 300 km depth, P and S PREM wave velocities are smoothly

increased by 1 and 2.5 per cent, respectively. Below this first anomaly, between 450 and 800 km depth, the P and S PREM wave velocities are
smoothly reduced by 1.5 and 3 per cent, respectively.

a b

c d
Figure 9. Synthetic test results corresponding to the phase velocity measurements presented in Fig. 10. For each test (see Sections 4.2 and 4.3 for details),
one of the waveforms synthesized in a 1-D perturbed model (Fig. 8) is plotted as a solid line. The corresponding seismograms before (computed in PREM)
and after inversion are drawn as dotted lines.
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4.2 Rayleigh wave results

Concerning Rayleigh waves, two different tests are presented. For each of them, comparisons of one of the waveforms before and after
inversion with the corresponding synthetic datum are shown in Figs 9(a) and (b). The results, in terms of phase velocity perturbation curves
are displayed in Figs 10(a) and (b).

In the first one, six vertical traces are synthesized in model A (Fig. 8) and inverted simultaneously. Data correspond to six different
events about 11 000 km far from the recording station and within a depth range of between 15 and 150 km. Real noise, recorded at the SCZ
GEOSCOPE station (Stutzmann et al. 2000) is added. Although the model A heterogeneity is rather shallow, Fig. 9(a) shows that higher
modes are greatly affected by such a velocity anomaly. As previously explained in Section 3.6 some artefacts, due to the different selected
mode-branch frequency ranges and to the FM/HM time windowing, arise when shifting the PREM waveform using the measured phase
velocity curves. This effect is visible in Fig. 9(a) around 4000 s. Nevertheless, phase velocities (Fig. 10a) are well recovered compared with the
large discrepancy between the PREM phase velocities and those to retrieve, and also despite of the noise added to the synthetic data. Fig. 10(a)

a b c d
Figure 10. Synthetic test results, in terms of phase velocity perturbation curves, underlying the waveforms displayed in Fig. 9. For each mode-branch and
each test (see Sections 4.2 and 4.3), the difference between the synthetic model (which has to be retrieved) and the reference phase velocities is drawn as a solid
line. The difference between the synthetic model phase velocity and the inversion result is plotted as a grey dashed line with corresponding error bars.
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Table 1. Numerical comparison of vertical Rayleigh wave results along
the Vanuatu–California path displayed in Fig. 11. PREM velocity values are
reported according to the period values defined by Cara (1979) (referred
to as C.1979). These results are summarized in Lévêque & Cara (1985).
The results obtained by van Heijst & Woodhouse (1997) (referred to as
vHW.1997) are reported in the fifth column. Results of the present study are
summarized in the last column.

Mode Period PREM C.1979 vHW.1997 This study
(s) (km s−1) (km s−1) (km s−1) (km s−1)

n = 0 110.70 4.127 4.102 4.139 4.135
81.92 4.029 4.019 4.063 4.061
57.69 3.967 3.986 4.036 4.033

n = 1 132.13 6.425 6.288 6.396 6.379
95.26 5.782 5.673 5.745 5.710
70.62 5.339 5.232 5.303 5.260

n = 2 53.90 5.815 5.694 5.771 5.750

shows that for a given mode-branch and for specific frequency values, phase velocity after inversion does not always match model A to the
retrieved phase velocity. A major advantage of the roller coaster technique is that these mismeasurements are correctly taken into account in
the a posteriori variances. It also appears that, focusing on the sixth overtone a posteriori uncertainties, this mode-branch is not sufficiently
excited to accurately measure its phase velocity. This is further corroborated by an examination of its amplitude spectra (not displayed here).

a b

c

d

Figure 11. (a) Fundamental and higher-mode absolute phase velocities along the Vanuatu–California path. For each mode-branch, PREM phase velocities
(solid lines) and measurements realized in this study (dotted lines) are plotted as a function of the period. The three seismograms inverted simultaneously in
this study are displayed in Fig. 12. (b) Enlarged area of the left-side figure, for the fundamental mode. Our results are compared with those obtained by Cara
(1979) (long-dashed line, referred to as C.1979) and by van Heijst & Woodhouse (1997) (short-dashed line, referred to as vHW.1997). (c) and (d) The same
comparisons for the first and the second overtone, respectively.
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The second test on Rayleigh waves consists in the inversion of four seismograms synthesized in model C (Fig. 8). Events underlying
the waveforms are clustered about 11 550 km from the station and within a depth range of between 20 and 100 km. Results are displayed
in Figs 9(b) and 10(b). The two superimposed anomalies induce some compensation effects on several HM phase velocities perturbations.
Consequently, only the FM of the datum synthesized in model C (Fig. 9b), is largely different from the PREM synthetic seismogram. After
inversion the whole signal waveform is correctly retrieved and due to the FM/HM time windowing (see Section 3.1), overtone weak amplitudes
are not affected by the large FM amplitude. The phase velocities are correctly recovered (Fig. 10b) except for the sixth overtone, which is,
however, taken into account well when considering its a posteriori variances.

4.3 Love wave results

Two different tests are presented concerning Love waves. The phase velocity perturbation curves are displayed in Figs 10(c) and (d). The
comparisons between one of the synthetic seismograms, inversed simultaneously, with the initial and the final waveforms are shown in
Figs 9(c) and (d).

In the first test, three different traces are synthesized in model B (Fig. 8). They correspond to three earthquakes, about 14 000 km away
from the recording location and within a depth range between 15 and 35 km. The inversion result is displayed in Figs 9(c) and 10(c). Considering
the model B roughness, the phase velocities are rather correctly recovered. The weak amplitude of the HM part of the signal implies that
different overtones are inverted in the same too wide frequency range. Thus, the underdetermination of the problem is not sufficiently reduced
and several phase velocities are not well constrained (see, for example, the fourth overtone). However, even if a given mode-branch phase
velocity is not correctly measured, first the use of a SVD-type algorithm allows one to assess that such a mode-branch does not bias the
determination of the others, and second the a posteriori estimation of the reliability reflects this unresolved overtone correctly.

The second test concerning Love waves consists in the inversion of seven seismograms synthesized in model C (Fig. 8). Earthquakes
underlying the waveforms are located about 11 450 km from the station and within a depth range between 15 and 256 km. Considering
the initial discrepancy between model C and the PREM waveform (Fig. 9d), the signal is correctly retrieved. As previously mentioned, the
different overtones are inverted over a too wide frequency range (Fig. 10d). Thus, as a consequence of this underdetermination, several
mode-branch phase velocities are not well measured (see, for example, the second overtone). However, once again, the use of an SVD inverse
algorithm allows other mode-branches to not be affected by this mismeasurement and the corresponding a posteriori variances clearly point
out unresolved overtones, which not underlie the waveforms in a significant way.

5 R E A L DATA I N V E R S I O N R E S U LT S

In this section we present Rayleigh and Love phase velocity measurements along the Vanuatu Islands-to-California path.
The Rayleigh wave results are compared with those obtained by Cara (1979) and van Heijst & Woodhouse (1997), hereafter referred

to as C.1979 and vHW.1997, respectively. The different results are displayed in Fig. 11 and part of them is summarized in Table 1. The
seven different phase velocities (FM+HM) are measured by inverting three seismograms provided by earthquakes clustered in the Vanuatu
region (13◦S, 167◦E) and recorded at the SCZ GEOSCOPE station. Their depth varies between 98 and 210 km. All the waveforms inverted
simultaneously are shown in Fig. 12. In Fig. 11(a), FM and the first six overtone phase velocities are plotted as a function of period. For
each of the three traces displayed in Fig. 12, the signal is well recovered and phase velocities are determined with a high reliability estimation
(except for the fifth overtone low frequencies). For the FM (Fig. 11b), the phase velocity measured in this study is almost identical to that
measured by vHW.1997. At short periods, between 45 and 100 s, the two curves differ noticeably from the PREM phase velocity. This upward

Table 2. Numerical comparison of Love wave results along the Vanuatu–
California path. PREM velocity values are reported for several selected peri-
ods according to the periods expressed by Lévêque & Cara (1985) (denoted
as LC.1985 in this table). The results of the present study are summarized
in the last column.

Mode Period PREM LC.1985 This study
(s) (km s−1) (km s−1) (km s−1)

n = 0 150.00 4.776 4.939 4.803
110.00 4.668 4.780 4.707

80.00 4.588 4.703 4.645
60.00 4.528 4.658 4.611

n = 1 110.00 6.013 6.180 5.979
80.00 5.503 5.608 5.494
50.00 5.043 5.118 5.017

n = 2 80.00 6.667 6.830 6.598
55.00 5.817 5.917 5.690
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Figure 12. Waveforms used to measure Rayleigh FM and HM phase velocities along the Vanuatu–California path (Fig. 11). Each of the three seismograms
(solid line) is compared with the synthetic waveforms before inversion (computed in PREM) and after phase shift using inversion results. Both are represented
as a dashed line.

trend has already been noticed by C.1979 but to a lesser extent. Concerning the first overtone (Fig. 11c), our results agree correctly with those
found by C.1979 and vHW.1997. It confirms the presence of a phase velocity negative perturbation at short periods. Between 50 and 100 s,
our measurement is between the phase velocities measured by C.1979 and by vHW.1997. At longer periods, our result is closer to that of
vHW.1997. For the second overtone (Fig. 11d), our and vHW.1997 results are quite similar. All the phase velocities are smaller than that from
PREM, but when comparing with the C.1979 results, the size of the perturbations is different. Our and vHW.1997 perturbations are smaller
than those of C.1979. However, the frequency ranges in which C.1979 measured the HM phase velocity differs significantly from the two
other studies, which makes any comparison difficult.

Part of the Love wave results, for several selected period values, is summarized in Table 2. Our results (FM and the first two mode-branches)
are compared with the phase velocities mentioned by Lévêque & Cara (1985). In this study, three seismograms are inverted simultaneously.
Events are clustered in the Vanuatu region centred around 15◦S, 167◦E, which approximately reproduces the experimental conditions stated
by Lévêque & Cara (1985). Then, the epicentral distance of the barycentre is approximately 9470 km. The different earthquake depths vary
between 15 and 122 km. In contrast to Rayleigh wave phase velocity measurements, there is a large discrepancy between the results of Lévêque
& Cara (1985) and ours. This contrast is probably due to stronger coupling effects between the different mode-branches. Concerning FM,
this discrepancy tends to reduce with increasing frequency values but globally, at long periods, our results are closer to the PREM phase
velocities than Lévêque & Cara (1985). A more detailed study over a larger frequency domain is then required in order to allow any warranted
comparison.

6 C O N C L U S I O N

The use of the roller coaster technique, presented in this paper, enables one to measure several mode-branch phase velocities efficiently,
with a real non-linear algorithm. Each mode-branch solution, defined over its own significant frequency range, is a smoothed average phase
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velocity along an epicentre–station path. These measurements explain well both real and synthetic Rayleigh and Love waveforms, within a
maximum period range included between 40 and 500 s. Except for the mode-branch significant frequency range determination, the roller
coaster technique is not sensitive to the reference model, for which synthetic seismograms are computed. In order to take this possible bias
into account, a SVD algorithm is used for the matrices inversion. In this article, we do not improve the forward problem but highlight how it
is important not to a priori constrict the solution around the reference model, which is even made when starting from it to perform a gradient
least-squares inversion in order to solve a highly non-linear problem. The main characteristic of our approach is based on the simple idea
of first determining several possible configurations for each mode-branch phase velocity, assuming large-scale variations over the frequency
range, and secondly to test each of these configurations to finally retain the solution that achieves the minimum misfit. Such an algorithm
is an alternative to combining some a priori information over the parameter space and an inversion scheme that preserves a large range of
solutions. This method, since it combines a systematic large–scale exploration with multiple local least–squares optimizations, accounts for
the high non–linearity and the nonunicity of the forward problem and is therefore greatly sensitive to the data set. In order to check the data
quality, the procedure is not completely automated but the processing time is sufficiently reasonable to treat a large number of seismograms
rapidly. In the future, this approach can be used with a more realistic wave perturbation theory, including effects such as cross-branch coupling
and/or off-great-circle propagation. In every synthetic test we present here, each mode-branch a posteriori reliability estimate turns out to be
a very powerful instrument in assessing the phase velocity measurements. Concerning Rayleigh waves, our Vanuatu–California path results
and previously determined ones seem to correctly agree. A more detailed study and comparisons with other measurements, using different
methods, are required for Love waves.
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A P P E N D I X A : T H I R D - O R D E R D E V E L O P M E N T

In this appendix, we show that the forward problem expressed in eq. (6) is equivalent to an expression using a phase velocity perturbation but
expanded to third order. Considering the jth mode-branch, we assume that

δC j (r, ω) = C (R)
j (r, ω) − C (S)

j (ω), (A1)

then eq. (2) rises as

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

A(S)
j (r, ω) exp

{
i

[
� j (r, ω) − ωa�

C (S)
j (ω)

χ ′
]}

, (A2)

with

χ ′ =
[

1 + δC j (r, ω)

C (S)
j (ω)

]−1

, (A3)

r, ω, A, �, a, � and � as previously defined in Section 2. Introducing a new expression for the dimensionless parameter vector, denoted as
p′

j (r, ω) and defined as follows:

p′
j (r, ω) = C (R)

j (r, ω) − C (S)
j (ω)

C (S)
j (ω),

(A4)

expanding the χ ′ term up to third order and introducing the synthetic phase �
(S)
j (r, ω), as the sum of the source phase and the phase shift due

to the propagation in the reference model, the forward problem becomes

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

A(S)
j (r, ω) exp

[
i

{
�

(S)
j (r, ω)

�

C j
+ ωa�

C (S)
j (r, ω)

[
p′

j (r, ω) − p′2
j (r, ω) + p′3

j (r, ω)
]}]

. (A5)

If the choice to develop the χ ′ term (eq. A3) to first order is made, then the forward problem can be written as

A(R)(r, ω) exp
[
i�(R)(r, ω)

] =
n∑

j=0

A(S)
j (r, ω) exp

{
i

[
�

(S)
j (r, ω) + ωa�

C (S)
j (ω)

p′
j (r, ω)

]}
. (A6)

To test the accuracy of eqs (A5) and (A6) a very simple experiment is performed and is only presented for a single mode-branch for reasons of
clarity ( Fig. A1). A fundamental mode waveform is synthesized in model A (see Section 4.1 and Fig. 8 for more details), assessing that phase
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Figure A1. The dotted line represents a fundamental mode seismogram computed in model A (see Section 4.1 and Fig. 8 for more details). The model A phase
velocity is used directly to phase shift the FM seismogram computed in PREM (not displayed here for clarity). When expanding the phase velocity perturbation
to first order (eq. A6) the reconstructed signal (small-dashed line) is phase shifted by 5 s as shown in the zoomed part of the figure. It is correctly retrieved
when expanding the phase velocity perturbation up to third order (eq. A5) (represented as a dotted line). The long-dashed line represents the recovered phase
when using a slowness perturbation development (eq. 6). Details are presented in Appendix A.

velocity perturbations are lower than 5 per cent. The direct computation of eigenfunctions in both models (PREM and model A) enables one
to obtain the exact expression of the parameter p′ (eq. A4), over the whole frequency range (between 40 and 500 s). Thus, starting from the
PREM synthetic seismogram and shifting the phase term as shown in eqs (A5) and (A6), provides two waveforms that should match the model
A seismogram phase exactly. In Fig. A1 it clearly appears that a first-order development induces a 5 s phase shift, whereas the waveform is
correctly recovered when developing the χ ′ term up to third order.

The same test is performed in order to compare the waveforms shifted following eqs (6) and (A5) and the model A seismogram. The
result is displayed in Fig. A1. The phase of the model A signal is correctly retrieved for both cases. The largest difference between third-order
velocity perturbation development (eq. A5) and slowness perturbation development (eq. 6) waveforms is lower than 0.001 per cent. Several
other tests have been performed with larger perturbation size (until 10 per cent) and reinforce this result. In the perturbation range used in this
study, eqs (6) and (A5) are then strictly equivalent.

A P P E N D I X B : I N F L U E N C E O F D I F F E R E N T T I M E W I N D O W D I M E N S I O N S

In order to test the influence of the time picking step in the roller coaster technique, results of several experiments are presented in this
appendix. Three different seismograms, clustered in the same area, are inverted (see Section 5). They are located near the Vanuatu islands
within a depth range between 98 and 210 km, and are recorded at the SCZ GEOSCOPE station. For a given trace, five different time pickings
are considered. The influence of these pickings is summarized in the Table B1, for one of these seismograms. The different picking labels
are explained in Section 3.1. In the first four columns, the variation of the pickings are reported with respect to the initial picking time. We
present in the last three columns, θ as defined hereafter, for three different mode-branches (fundamental mode, first and third overtone):

θn = 1

lmax

lmax∑
l=1

C1
l,n − Ci

l,n,

where n denotes the mode-branch considered, lmax is the number of frequencies and where i is the test number. These experiments show that
the phase velocity estimates are very robust for a wide range of time window dimensions. This is a consequence of the simultaneous use of
several seismograms, and the using of an SVD algorithm that stabilizes the inversion results.

Table B1. Five different time pickings realized for a given real seismogram and the corresponding average of
differences over the inverted frequency domain, for three mode-branches. For each line the results are presented
with respect to the initial test. See Appendix B for more details.

Test no δT1 (s) δT2 (s) δT3 (s) δT4 (s) θ0 (km s−1) θ1 (km s−1) θ3 (km s−1)

2 501.7 −108.9 −78.1 −147.5 1.48 × 10−4 4.37 × 10−4 −5.24 × 10−3

3 500.7 −109.1 −131.4 −143.6 −1.17 × 10−3 2.99 × 10−3 −3.98 × 10−3

4 522.0 −52.4 −41.4 66.0 5.26 × 10−4 2.34 × 10−3 −1.02 × 10−3

5 0.0 −108.9 −131.4 0.0 5.13 × 10−5 2.25 × 10−3 −1.62 × 10−3
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