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NUMERICAL APPROXIMATION OF THE 3D HYDROSTATIC
NAVIER–STOKES SYSTEM WITH FREE SURFACE
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Abstract. In this paper we propose a stable and robust strategy to approximate the 3D incompressible
hydrostatic Euler and Navier–Stokes systems with free surface. Compared to shallow water approxi-
mation of the Navier–Stokes system, the idea is to use a Galerkin type approximation of the velocity
field with piecewise constant basis functions in order to obtain an accurate description of the vertical
profile of the horizontal velocity. Such a strategy has several advantages. It allows

– to rewrite the Navier–Stokes equations under the form of a system of conservation laws with source
terms,
– the easy handling of the free surface, which does not require moving meshes,
– the possibility to take advantage of robust and accurate numerical techniques developed in extensive
amount for Shallow Water type systems.

Compared to previous works of some of the authors, the three dimensional case is studied in this paper.
We show that the model admits a kinetic interpretation including the vertical exchanges terms, and we use
this result to formulate a robust finite volume scheme for its numerical approximation. All the aspects of the
discrete scheme (fluxes, boundary conditions, . . . ) are completely described and the stability properties
of the proposed numerical scheme (well-balancing, positivity of the water depth, . . . ) are discussed. We
validate the model and the discrete scheme with some numerical academic examples (3D non stationary
analytical solutions) and illustrate the capability of the discrete model to reproduce realistic tsunami waves
propagation, tsunami runup and complex 3D hydrodynamics in a raceway.
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1. Introduction

In this paper we present layer-averaged Euler and Navier–Stokes models for the numerical simulation of
incompressible free surface flows over variable topographies. We are mainly interested in applications to geo-
physical water flows such as tsunamis, lakes, rivers, estuarine waters, hazardous flows in the context either of
advection dominant flows or of wave propagation.

The simulation of these flows requires stable, accurate, conservative schemes able to sharply resolve stratified
flows, to handle efficiently complex topographies and free surface deformations, and to capture robustly wet/dry
fronts. In addition, the application to realistic three-dimensional problems demands efficient methods with
respect to computational cost. The present work is aimed at building a simulation tool endowed with these
properties.

Due to computational issues associated with the free surface Navier–Stokes or Euler equations, the simulations
of geophysical flows are often carried out with shallow water type models of reduced complexity. Indeed, for
vertically averaged models such as the Saint-Venant system [12], efficient and robust numerical techniques
(relaxation schemes [21], kinetic schemes [7,47], . . . ) are available and avoid to deal with moving meshes. In order
to describe and simulate complex flows where the velocity field cannot be approximated by its vertical mean,
multilayer models have been developed [3, 5, 8, 20, 22, 30, 31, 46, 53]. Unfortunately these models are physically
relevant for non miscible fluids. In [9,10,27,35,36,49], some authors have proposed a simpler and more general
formulation for multilayer model with mass exchanges between the layers. The obtained model has the form of a
conservation law with source terms and presents remarkable differences with respect to classical models for non
miscible fluids. In the multilayer approach with mass exchanges, the layer partition is merely a discretization
artefact, and it is not physical. Therefore, the internal layer boundaries do not necessarily correspond to isopycnic
surfaces. A critical distinguishing feature of our model is that it allows fluid circulation between layers. This
changes dramatically the properties of the model and its ability to describe flow configurations that are crucial
for the foreseen applications, such as recirculation zones.

Compared to previous works of some of the authors [9,10,27], that handled only the 2D configurations, this
paper deals with the 3D case on unstructured meshes reinforcing the need of efficient numerical schemes. The
key points of this paper are the following

– A formulation of the 3D Navier–Stokes system under the form of a set of conservation laws with source
terms on a fixed 2D domain.

– Compared to previous works of some of the authors [9, 10], we propose a complete kinetic interpretation of
the model allowing to derive a robust and accurate numerical scheme. Notice that the kinetic interpretation
is valid for the implicit treatment of the vertical exchange terms arising in the multilayer description.

– Choosing a Newtonian rheology for the fluid, we propose energy-consistent – at the continuous and discrete
levels – models extending previous results [27] in the 3D context.

– Compared to 2D (x, z) situations, the 3D approximation with unstructured meshes raises new difficulties
(boundary conditions, computational costs, upwinding, . . . ). The fact that the proposed strategy is also
efficient in 3D proves – to some extent – its applicability. We give a complete description of all the ingredients
of the numerical scheme. Even if some parts have been already published in 2D, the objective is to have a
self-contained paper for 3D applications.

– The numerical approximation of the 3D Navier–Stokes system is endowed with strong stability properties
(consistency, well-balancing, positivity of the water depth, wet/dry interfaces treatment, . . . ).

– Using academic examples, we prove the accuracy of the proposed numerical procedure especially convergence
curves towards a 3D non-stationary analytical solution with wet-dry interfaces have been obtained (see
Sect. 6.2.1).

Most of the numerical models in the literature for environmental stratified flows use finite difference or finite
element schemes solving the free surface Navier–Stokes equations. We refer in particular to [32,39] and references
therein for a partial review of these methods. Since the layer-averaged model has the form of a conservation law
with source terms, we single out a finite volume scheme. Moreover, the kinetic interpretation of the continuous
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model leads to a kinetic solver endowed with strong stability properties (well-balancing, domain invariant,
discrete entropy [11]). The viscous terms are discretized using a finite element approach. Considering various
analytical solutions we emphasize the accuracy of the discrete model and we also show the applicability of the
model to real geophysical situations. The numerical method is implemented in Freshkiss3D [2] and other various
academic tests are documented on the web site.

The outline of the paper is as follows. In Section 2, we recall the incompressible and hydrostatic Navier–
Stokes equations and the associated boundary conditions. The layer-averaged system obtained by a vertical
discretization of the hydrostatic model is described in Section 3. The kinetic interpretation of the model is given
in Section 4 allowing to derive a numerical scheme presented in Section 5. Numerical validations and application
to real test cases are shown in Section 6.

2. The hydrostatic Navier–Stokes system

We consider the three-dimensional hydrostatic Navier–Stokes system [40] describing a free surface gravita-
tional flow moving over a bottom topography zb(x, y). For free surface flows, the hydrostatic assumption consists
in neglecting the vertical acceleration, see [24,25,37,43] for justifications of such hydrostatic models.

The incompressible and hydrostatic Navier–Stokes system consists in the model

∇.U = 0, (2.1)

∂u
∂t

+∇x,y.(u⊗ u) +
∂uw
∂z

=
1
ρ0
∇x,y.σ +

µ

ρ0

∂2u
∂z2

, (2.2)

∂p

∂z
= −ρ0g, (2.3)

where U(t, x, y, z) = (u, v, w)T is the velocity, u(t, x, y, z) = (u, v)T is the horizontal velocity, σ = −pId +
µ∇x,yu = −pId + Σ is the total stress tensor, p is the fluid pressure, g represents the gravity acceleration and

ρ0 is the fluid density. The quantity ∇ denotes ∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
, ∇x,y corresponds to the projection of ∇ on

the horizontal plane i.e. ∇x,y =
(
∂
∂x ,

∂
∂y

)T
. We assume a Newtonian fluid, µ is the viscosity coefficient and we

will make use of ν = µ/ρ0.
We consider a free surface flow (see Fig. 1a), therefore we assume

zb(x, y) ≤ z ≤ η(t, x, y) := h(t, x, y) + zb(x, y),

with zb(x, y) the bottom elevation and h(t, x, y) the water depth. Due to the hydrostatic assumption in equa-
tion (2.3), the pressure gradient in equation (2.2) reduces to ρ0g∇x,yη.

2.1. Boundary conditions

2.1.1. Bottom and free surface

Let nb and ns be the unit outward normals at the bottom and at the free surface respectively defined by (see
Fig. 1a)

nb =
1√

1 + |∇x,yzb|2

(
∇x,yzb
−1

)
, and ns =

1√
1 + |∇x,yη|2

(
−∇x,yη

1

)
.

The system (2.1)–(2.3) is completed with boundary conditions. On the bottom we prescribe an impermeability
condition

U.nb = 0, (2.4)

whereas on the free surface, we impose the kinematic boundary condition

∂η

∂t
+ u(t, x, y, η).∇x,yη − w(t, x, y, η) = 0. (2.5)
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Figure 1. Fluid domain, notations and layerwise discretization.

Concerning the dynamical boundary conditions, at the bottom we impose a friction condition given e.g. by
a Navier law

ν
√

1 + |∇x,yzb|2
∂u
∂nb

= −κu, (2.6)

with κ a Navier coefficient. For some applications, one can choose κ = κ(h,u|b).
At the free surface, we impose the no stress condition

ν
∂ũ
∂ns
− pns = −pa(t, x, y)ns +W (t, x, y)ts, (2.7)

where ũ = (u, 0)T , pa(t, x, y) and W (t, x, y) are two given quantities, pa (resp. W ) mimics the effects of
the atmospheric pressure (resp. the wind blowing at the free surface) and ts is a given unit horizontal vector.
Throughout the paper pa = 0 except in Section 6.2.2 where the effects of the atmospheric pressure is considered.

2.1.2. Fluid boundaries and solid walls

On solid walls, we prescribe an impermeability condition

U.n = 0, (2.8)

coupled with an homogeneous Neumann condition

∂u
∂n

= 0, (2.9)

n being the outward normal to the considered wall.
In this paper we consider fluid boundaries on which we prescribe zero, one or two of the following conditions

depending on the type of the flow (fluvial or torrential): Water level h+ zb(x, y) given, flux hU given.
The system is completed with some initial conditions

h(0, x, y) = h0(x, y), U(0, x, y, z) = U0(x, y, z),

with U0 satisfying the divergence free condition (2.1).
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2.2. Energy balance

The smooth solutions of the system (2.1)–(2.7) satisfy the energy balance

∂

∂t

∫ η

zb

E dz +∇x,y.
∫ η

zb

(
u (E + g(η − z))− ν∇x,y

|u|2

2

)
dz = −ν

∫ η

zb

|∇x,yu|2dz − κ u|2b . (2.10)

E = E(z,u) =
|u2|

2
+ gz. (2.11)

2.3. The hydrostatic Euler system

In the case of an inviscid fluid, the system (2.1)–(2.7) consists in the incompressible and hydrostatic Euler
equations with free surface and reads

∇.U = 0, (2.12)
∂u
∂t

+∇x,y.(u⊗ u) +
∂uw
∂z

+ g∇x,yη = 0, (2.13)

coupled with the two kinematic boundary conditions (2.4), (2.5) and p(t, x, y, η(t, x, y)) = 0.
We recall the fundamental stability property related to the fact that the hydrostatic Euler system admits,

for smooth solutions, an energy conservation that can be written under the form

∂

∂t

∫ η

zb

E dz +∇x,y.
∫ η

zb

(u (E + g(η − z))) dz = 0, (2.14)

with E defined by (2.11).

3. The layer-averaged model

We consider a discretization of the fluid domain by layers (see Fig. 1b) where the layer α contains the points
of coordinates (x, y, z) with z ∈ Lα(t, x, y) = [zα−1/2, zα+1/2] and {zα+1/2}α=1,...,N is defined by zα+1/2(t, x, y) = zb(x, y) +

α∑
j=1

hj(t, x, y),

hα(t, x, y) = zα+1/2(t, x, y)− zα−1/2(t, x, y) = lαh(t, x, y),
(3.1)

for α ∈ {0, . . ., N} and
∑N
α=1 lα = 1.

3.1. The layer-averaged Euler system

The layer-averaging process for the 2D hydrostatic Euler and Navier–Stokes systems is precisely described in
the paper [27] with a general rheology, the reader can refer to it. In the following, we present a Galerkin type
approximation of the 3D Euler system also leading to a layer-averaged version of the Euler system, the obtained
model reduces to [27] in the 2D context.

Using the notations (3.1), let us consider the space PN,t0,h of piecewise constant functions defined by

PN,t0,h =
{
1z∈Lα(t,x,y)(z), α ∈ {1, . . ., N}

}
, (3.2)

where 1z∈Lα(t,x,y)(z) is the characteristic function of the layer Lα(t, x, y). Using this formalism, the projection
of u, v and w on PN,t0,h is a piecewise constant function defined by

XN (t, x, y, z, {zα}) =
N∑
α=1

1[zα−1/2,zα+1/2](z)Xα(t, x, y), (3.3)

for X ∈ (u, v, w).
The three following propositions hold.
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Proposition 3.1. Using the space PN,t0,h defined by (3.2) and the decomposition (3.3), the Galerkin approxima-
tion of the incompressible and hydrostatic Euler equations (2.12), (2.13), (2.4), (2.5) leads to the system

N∑
α=1

∂hα
∂t

+
N∑
α=1

∇x,y.(hαuα) = 0, (3.4)

∂hαuα
∂t

+∇x,y. (hαuα ⊗ uα) +∇x,y
(g

2
hhα

)
= −ghα∇x,yzb

+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2, α = 1, . . ., N. (3.5)

The quantity Gα+1/2 (resp. Gα−1/2) corresponds to mass exchange accross the interface zα+1/2 (resp. zα−1/2)
and Gα+1/2 is defined by

Gα+1/2 =
α∑
j=1

(
∂hj
∂t

+∇x,y.(hjuj)
)

= −
N∑
j=1

(
α∑
p=1

lp − 1j≤α

)
∇x,y.(hjuj), (3.6)

for α = 1, . . ., N . The velocities at the interfaces uα+1/2 are defined by

uα+1/2 =
{

uα if Gα+1/2 ≤ 0
uα+1 if Gα+1/2 > 0 . (3.7)

The smooth solutions of (3.4) and (3.5) satisfy an energy balance and we have the following proposition.

Proposition 3.2. The system (3.4) and (3.5) admits, for smooth solutions, the energy balance

∂

∂t
Eα +∇x,y.

(
uα
(
Eα +

g

2
hαh

))
=
|uα+1/2|2

2
Gα+1/2 −

|uα−1/2|2

2
Gα−1/2

− 1
2

(uα+1/2 − uα)2Gα+1/2 +
1
2

(uα−1/2 − uα)2Gα−1/2, (3.8)

with

Eα =
hα|uα|2

2
+
g

2
hαh+ ghαzb. (3.9)

The sum of equations (3.8) for α = 1, . . ., N gives the energy balance

∂

∂t

N∑
α=1

Eα +
N∑
α=1

∇x,y.uα
(
Eα +

g

2
hαh

)
= −

N−1∑
α=1

(
(uα+1/2 − uα)2

2
−

(uα+1/2 − uα+1)2

2

)
Gα+1/2, (3.10)

and according to the choice (3.7), equation (3.10) also writes

∂

∂t

N∑
α=1

Eα +
N∑
α=1

∇x,y.uα
(
Eα +

g

2
hαh

)
= −

N−1∑
α=1

(uα+1 − uα)2

2
|Gα+1/2|. (3.11)

Remark 3.3. Equation (3.11) is a layer discretization of the energy balance (2.11). The definition of uα+1/2

given in (3.7) ensures the right hand side in equation (3.11) is nonpositive. Notice that a centered definition for
uα+1/2 i.e.

uα+1/2 =
uα + uα+1

2
, (3.12)

instead of (3.7) leads to a vanishing right hand side in equation (3.11). But the centered choice (3.12) does not
allow to obtain an energy balance in the variable density case and does not give a maximum principle, at the
discrete level, see [9]. Simple calculations show that any other choice than (3.7) or (3.12) leads to a non negative
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r.h.s. in (3.11). Indeed, let us consider the energy balance given in Proposition 3.2. In order to ensure either
conservation or dissipation of the energy, it is necessary to ensure

−
(
(uα+1/2 − uα)2 − (uα+1/2 − uα+1)2

)
Gα+1/2 ≤ 0,

for any values of Gα+1/2, uα and uα+1. In other words, one should have

−(uα − uα+1)
(
uα + uα+1 − 2uα+1/2

)
Gα+1/2 ≤ 0,

for any value of Gα+1/2, uα and uα+1. And this gives the two possible choices (3.7) or (3.12) for uα+1/2.

It is noticeable that, thanks to the kinematic boundary condition at each interface, the vertical velocity is
no more a variable of the system (3.5). This is an advantage of this formulation over the hydrostatic model
where the vertical velocity is needed in the momentum equation (2.2) and is deduced from the incompressibility
condition (2.1). Even if the vertical velocity w no more appears in the model (3.4) and (3.5), it can be obtained
as follows.

Proposition 3.4. The piecewise constant approximation of the vertical velocity w satifying equation (3.3) is
given by

wα = kα − zα∇x,y.uα (3.13)

with
k1 = ∇x,y.(zbu1), kα+1 = kα +∇x,y.

(
zα+1/2(uα+1 − uα)

)
.

The quantities {wα}Nα=1 are obtained only using a post-processing of the variables governing the system (3.4)
and (3.5).

Proof of Proposition 3.1. Considering the divergence free condition (2.12), using the decomposition (3.3) and
the space of test functions (3.2), we consider the quantity∫

R
1z∈Lα(t,x,y)∇.UNdz = 0,

with UN = (uN , vN , wN )T . Simple computations give

0 =
∫

R
1z∈Lα(t,x,y)∇.UNdz =

∂hα
∂t

+
∂

∂x

∫ zα+1/2

zα−1/2

u dz +
∂

∂y

∫ zα+1/2

zα−1/2

v dz −Gα+1/2 +Gα−1/2,

leading to
∂hα
∂t

+∇x,y.(hαuα) = Gα+1/2 −Gα−1/2, (3.14)

with Gα±1/2 defined by

Gα+1/2 =
∂zα+1/2

∂t
+ uα+1/2.∇x,yzα+1/2 − wα+1/2.

The sum for α = 1, . . ., N of the above relations gives equation (3.4) where the kinematic boundary condi-
tions (2.4) and (2.5) corresponding to

G1/2 = GN+1/2 = 0, (3.15)

have been used. Similarly, the sum for j = 1, . . ., α of the relations (3.14) with (3.15) gives the expression (3.6)
for Gα+1/2.

Now we consider the Galerkin approximation of equation (2.13) i.e. the quantity∫
R

1z∈Lα(t,x,y)

(
∂uN

∂t
+∇x,y.(uN ⊗ uN ) +

∂uNwN

∂z
+ g∇x,yη

)
dz = 0,

leading, after simple computations, to equation (3.5). �



1988 S. ALLGEYER ET AL.

Proof of Proposition 3.2. In order to obtain (3.8) we multiply (3.14) by g(h + zb) − |uα|2/2 and (3.5) by uα
then we perform simple manipulations. More precisely, the momentun equation along the x axis multiplied by
uα gives (

∂

∂t
(hαuα) +

∂

∂x

(
hαu

2
α +

g

2
hhα

)
+

∂

∂y
(hαuαvα)

)
uα

=
(
−ghα

∂zb
∂x

+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2

)
uα.

Considering first the left hand side of the preceding equation excluding the pressure terms, we denote

Iu,α =
(
∂

∂t
(hαuα) +

∂

∂x

(
hαu

2
α

)
+

∂

∂y
(hαuαvα)

)
uα,

and using (3.14) we have

Iu,α =
∂

∂t

(
hαu

2
α

2

)
+

∂

∂x

(
uα
hαu

2
α

2

)
+

∂

∂y

(
vα
hαu

2
α

2

)
+
u2
α

2

(
∂hα
∂t

+∇x,y.(hαuα)
)
.

Now we consider the contribution of the pressure terms over the energy balance i.e.

Ip,u,α =
(
∂

∂x

(g
2
hhα

)
+ ghα

∂zb
∂x

)
uα,

and it comes

Ip,u,α = ghα
∂

∂x
(h+ zb)uα = g

∂

∂x
(hα(h+ zb)uα)− g(h+ zb)

∂

∂x
(hαuα)

=
∂

∂x

((g
2
hαh+

g

2
hα(h+ 2zb)

)
uα

)
− g(h+ zb)

∂

∂x
(hαuα).

Performing the same manipulations over the momentum equation along y and adding the terms
Iu,α,Iv,α,Ip,u,α,Ip,v,α and (3.14) multiplied by g(h+ zb)− |uα|2/2 gives the result. �

Proof of Proposition 3.4. Using the boundary condition (2.4), an integration from zb to z of the divergence free
condition (2.1) easily gives

w = −∇x,y.
∫ z

zb

u dz.

Replacing formally in the above equation u (resp. w) by uN (resp. wN ) defined by (3.3) and performing an
integration over the layer L1 of the obtained relation yields

h1w1 = −
∫ z3/2

zb

∇x,y.
∫ z

zb

u1 dzdz1 = h1∇x,y.(zbu1)−
z2

3/2 − z
2
b

2
∇x,y.u1,

i.e. w1 = ∇x,y.(zbu1) − z1∇x,y.u1, corresponding to (3.13) for α = 1. A similar computation for the layers
L2, . . ., LN proves the result (3.13) for α = 2, . . ., N . A more detailed version of this proof is given in [27]. �

3.2. The layer-averaged Navier–Stokes system

In Section 3.1, we have applied the layer-averaging to the Euler system, we now use the same process for
the hydrostatic Navier–Stokes system. First, we consider the Navier–Stokes system (2.1)–(2.7) for a Newtonian
fluid and then with a simplified rheology.
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3.2.1. Complete model

The layer-averaging process applied to the Navier–Stokes system (2.1)–(2.7) leads to the following proposition.

Proposition 3.5. The layer-averaged hydrostatic Navier–Stokes system (2.1)–(2.7) is given by
N∑
α=1

∂hα
∂t

+
N∑
α=1

∇x,y.(hαuα) = 0, (3.16)

∂hαuα
∂t

+ ∇x,y. (hαuα ⊗ uα) +∇x,y
(g

2
hhα

)
= −ghα∇x,yzb

+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2 +∇x,y. (hαΣα)
− Σα+1/2∇x,yzα+1/2 + Σα−1/2∇x,yzα−1/2

+ 2να+1/2
uα+1 − uα
hα+1 + hα

− 2να−1/2
uα − uα−1

hα + hα−1

− καuα +Wαts, α = 1, . . ., N, (3.17)

with

Σα+1/2 =
(

Σxx,α+1/2 Σxy,α+1/2

Σyx,α+1/2 Σyy,α+1/2

)
, (3.18)

Σxx,α+1/2 =
να+1/2

hα+1 + hα

(
hα
∂uα
∂x

+ hα+1
∂uα+1

∂x

)
− 2να+1/2

∂zα+1/2

∂x

uα+1 − uα
hα+1 + hα

, (3.19)

Σxy,α+1/2 =
να+1/2

hα+1 + hα

(
hα
∂uα
∂y

+ hα+1
∂uα+1

∂y

)
− 2να+1/2

∂zα+1/2

∂y

uα+1 − uα
hα+1 + hα

, (3.20)

and similar definitions for Σyx,α+1/2, Σyy,α+1/2. We also denote

Σα =
(

Σxx,α Σxy,α
Σyx,α Σyy,α

)
=

Σα+1/2 + Σα−1/2

2
, (3.21)

and

κα =
{
κ if α = 1
0 if α 6= 1 να+1/2 =

{
0 if α = 0, N
ν if α = 1, . . ., N − 1 Wα =

{
W if α = N
0 if α 6= N

. (3.22)

The vertical velocities {wα}Nα=1 are defined by (3.13).
For smooth solutions, the system (3.16) and (3.17) admits the energy balance

∂

∂t

N∑
α=1

Eα +∇x,y.
N∑
α=1

uα
(
Eα +

g

2
hαh− hαΣα

)
= −

N−1∑
α=1

|uα+1 − uα|2

2
|Gα+1/2|

−
N−1∑
α=1

hα+1 + hα
2ν

Σ2
α+1/2 −

N−1∑
α=1

2ν
|uα+1 − uα|2

hα+1 + hα
− κ|u1|2 +WuN .ts, (3.23)

with Eα defined by (3.9) and Σ2
α+1/2 =

∑
i,j Σ2

i,j,α+1/2. Relation (3.23) is consistent with a layer-averaged
discretization of the equation (2.10).

Notice that in (3.23), we use the notation

uαΣα =
(
uαΣxx,α + vαΣyx,α
uαΣxy,α + vαΣyy,α

)
.

Proof of Proposition 3.5. The proof is given in Appendix A. �

Remark 3.6. Notice that in the definition (3.21), since we consider viscous terms we use a centered
approximation.



1990 S. ALLGEYER ET AL.

3.2.2. Simplified rheology

The viscous terms in the layer-averaged Navier–Stokes system are difficult to discretize especially when a
discrete version of the energy balance has to be preserved. Hence, we propose a modified version of the model
given in Proposition 3.5.

Proposition 3.7. The layer-averaged Navier–Stokes can be written under the form
N∑
α=1

∂hα
∂t

+
N∑
α=1

∇x,y.(hαuα) = 0, (3.24)

∂hαuα
∂t

+∇x,y. (hαuα ⊗ uα) +∇x,y
(g

2
hhα

)
= −ghα∇x,yzb

+ uα+1/2Gα+1/2 − uα−1/2Gα−1/2 +∇x,y.
(
hαΣ0

α

)
−Tα

+ Λα+1/2(uα+1 − uα)− Λα−1/2(uα − uα−1)
− καuα +Wαts, α = 1, . . ., N, (3.25)

and

Σ0
xx,α+1/2 =

να+1/2

hα+1 + hα

(
hα
∂uα
∂x

+ hα+1
∂uα+1

∂x

)
, (3.26)

Σ0
xy,α+1/2 =

να+1/2

hα+1 + hα

(
hα
∂uα
∂y

+ hα+1
∂uα+1

∂y

)
, (3.27)

and similar definitions for Σ0
yx,α+1/2, Σ0

yy,α+1/2. We also denote

Tx,α+1/2 =
2να+1/2

hα+1 + hα
∇x,yzα+1/2. (hα∇x,yuα + hα+1∇x,yuα+1) , (3.28)

Ty,α+1/2 =
2να+1/2

hα+1 + hα
∇x,yzα+1/2. (hα∇x,yvα + hα+1∇x,yvα+1) , (3.29)

Λα+1/2 = να+1/2

2 + |∇x,yzα+1/2|2

hα+1 + hα
, (3.30)

Tα+1/2 =
(
Tx,α+1/2

Ty,α+1/2

)
, Tα =

(
Tx,α
Ty,α

)
=

Tα+1/2 + Tα−1/2

2
, (3.31)

Σ0
α+1/2 =

(
Σ0
xx,α+1/2 Σ0

xy,α+1/2

Σ0
yx,α+1/2 Σ0

yy,α+1/2

)
, (3.32)

Σ0
α =

(
Σ0
xx,α Σ0

xy,α

Σ0
yx,α Σ0

yy,α

)
=

Σ0
α+1/2 + Σ0

α−1/2

2
· (3.33)

For smooth solutions, the system (3.24) and (3.25) admits the energy balance

∂

∂t

N∑

α=1

Eα +∇x,y.
N∑

α=1

uα
(
Eα +

g

2
hαh− hαΣ0

α

)

= −
N−1∑

α=1

|uα+1 − uα|2

2
|Gα+1/2| −

N−1∑

α=1

2ν

hα+1 + hα
|uα+1 − uα|2 − κ|u1|2 +WuN .ts

−
N−1∑

α=1

hα+1 + hα
2ν

((
Σ0
xx,α+1/2 +

∂zα+1/2

∂x
(uα+1 − uα)

)2

+

(
Σ0
xy,α+1/2 +

∂zα+1/2

∂y
(uα+1 − uα)

)2

+

(
Σ0
yx,α+1/2 +

∂zα+1/2

∂x
(vα+1 − vα)

)2

+

(
Σ0
yy,α+1/2 +

∂zα+1/2

∂y
(vα+1 − vα)

)2
)

. (3.34)
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Proof of Proposition 3.7. Using simple manipulations, the model given in Proposition 3.5 corresponds to equa-
tions (3.24)–(3.33) except equation (3.30) having the form

Γα+1/2 = να+1/2

2 + |∇x,yzα+1/2|2

hα+1 + hα
− να+1/2∇x,y.

(
hα∇x,yzα+1/2

hα+1 + hα

)
·

Notice that
2
uα+1 − uα
hα+1 + hα

≈ ∂u

∂z
,

for N large and hence can be considered as bounded. Therefore, the second term of Γα+1/2(uα+1−uα) vanishes
when lhα → 0. Then the quantity Γα+1/2(uα+1 − uα) reduces to the expression of Λα+1/2(uα+1 − uα) with
Λα+1/2 given by equation (3.30).

The proof of the energy balance (3.34) is similar to the one given in Proposition 3.5. �

Remark 3.8. The layer-averaged Navier–Stokes system defined by (3.24) and (3.25) has the form

∂U

∂t
+∇x,y.F (U) = Sb(U) + Se(U, ∂tU, ∂xU) + Sv,f (U), (3.35)

where U = (h, qx,1, . . . , qx,N , qy,1, . . . , qy,N )T , and

Sb(U) =
(

0, gh1
∂zb
∂x

, . . . , ghN
∂zb
∂x

, gh1
∂zb
∂y

, . . . , ghN
∂zb
∂y

)T
,

with qx,α = hαuα, qy,α = hαvα. We denote with F (U) the fluxes of the conservative part, and with
Se(U, ∂tU, ∂xU) and Sv,f (U) the source terms, representing respectively the momentum exchanges and the
viscous, wind and friction effects.

The numerical scheme for the system (3.35) will be given in Section 5.

4. Kinetic description for the Euler system

In this section we give a kinetic interpretation of the system (3.4)–(3.8). The numerical scheme for the
system (3.4), (3.5) and (3.13) will be deduced from the kinetic description.

4.1. Preliminaries

We begin this section by recalling the classical kinetic approach – used in [48] for example – for the 1D
Saint-Venant system

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + g
h2

2
) + gh∂xzb = 0, (4.1)

with the water depth h(t, x) ≥ 0, the water velocity u(t, x) ∈ R and a slowly varying topography zb(x).
The kinetic Maxwellian is given by

M(U, ξ) =
1
gπ

(
2gh− (ξ − u)2

)1/2
+

, (4.2)

where U = (h, hu)T , ξ ∈ R and x+ ≡ max(0, x) for any x ∈ R. It satisfies the following moment relations,∫
R

(
1
ξ

)
M(U, ξ) dξ = U,

∫
R ξ

2M(U, ξ) dξ = hu2 + g h
2

2 · (4.3)

These definitions allow us to obtain a kinetic representation of the Saint-Venant system.
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Lemma 4.1. If the topography zb(x) is Lipschitz continuous, the pair of functions (h, hu) is a weak solution to
the Saint-Venant system (4.1) if and only if M(U, ξ) satisfies the kinetic equation

∂tM + ξ∂xM − g(∂xzb)∂ξM = Q, (4.4)

for some “collision term” Q(t, x, ξ) that satisfies, for a.e. (t, x),∫
R
Qdξ =

∫
R
ξQdξ = 0. (4.5)

Proof. If (4.4) and (4.5) are satisfied, we can multiply (4.4) by (1, ξ)T , and integrate with respect to ξ. Using (4.3)
and (4.5) and integrating by parts the term in ∂ξM , we obtain (4.1). Conversely, if (h, hu) is a weak solution
to (4.1), just define Q by (4.4); it will satisfy (4.5) according to the same computations. �

The standard way to use Lemma 4.1 is to write a kinetic relaxation equation [7, 16,17], like

∂tf + ξ∂xf − g(∂xzb)∂ξf =
M − f
ε

, (4.6)

where f(t, x, ξ) ≥ 0, M = M(U, ξ) with U(t, x) =
∫

(1, ξ)T f(t, x, ξ)dξ, and ε > 0 is a relaxation time. In the
limit ε→ 0 we recover formally the formulation (4.4), (4.5). We refer to [16] for general considerations on such
kinetic relaxation models without topography, the case with topography being introduced in [48]. Note that the
notion of kinetic representation as (4.4), (4.5) differs from the so called kinetic formulations where a large set of
entropies is involved, see [47]. For systems of conservation laws, these kinetic formulations include non-advective
terms that prevent from writing down simple approximations. In general, kinetic relaxation approximations can
be compatible with just a single entropy. Nevertheless this is enough for proving the convergence as ε → 0,
see [15].

4.2. Kinetic interpretation

In this paragaph, we give a kinetic interpretation of the model (3.4), (3.5) and (3.11).
To build the Gibbs equilibria, we choose the function

χ0(z1, z2) =
1

4π
1z21+z22≤4. (4.7)

This choice corresponds to the 2D version of the kinetic maxwellian used in 1D (see Rem. 4.2) and we have

Mα = M(Uα, ξ, γ) =
hα
c2
χ0

(
ξ − uα
c

,
γ − vα
c

)
, (4.8)

with c =
√

g
2h

Uα = (hα, hαuα, hαvα)T , (4.9)

and where (ξ, γ) ∈ R2. In other words, we have Mα = lα
2gπ1(ξ−uα)2+(γ−vα)2≤2gh.

Remark 4.2. Starting from the 2D maxwellian in the single layer case i.e.

Msv =
1

2gπ
1(ξ−u)2+(γ−v)2≤2gh, (4.10)

and computing its integral w.r.t. the variable γ yields∫
R
Msvdγ =

∫ v+
√

(2gh−(ξ−u)2)+

v−
√

(2gh−(ξ−u)2)+

1
2gπ

dγ =
1
gπ

√
(2gh− (ξ − u)2)+,

that is exactly the expression (4.2).
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The quantity Mα satisfies the following moment relations

∫
R2

1
ξ
γ

M(Uα, ξ, γ) dξdγ =

 hα
hαuα
hαvα

 ,

∫
R2

ξ2

ξγ
γ2

M(Uα, ξ, γ) dξdγ =

hαu2
α + g hαh2
hαuαvα

hαv
2
α + g hαh2

 . (4.11)

The interest of the function χ0 and hence the particular form (4.8) lies in its link with a kinetic entropy.
Consider the kinetic entropy

H(f, ξ, γ, zb) =
ξ2 + γ2

2
f + gzbf, (4.12)

where f ≥ 0, (ξ, γ) ∈ R2, zb ∈ R. Then one can check the relations

∫
R2

1
ξ
γ

H(Mα, ξ, γ)dξdγ =

Eα = hα
2 (u2

α + v2
α) + g

2hα(h+ 2zb)
uα(Eα + g

2hαh)
vα(Eα + g

2hαh).

 (4.13)

Let us introduce the Gibbs equilibria Nα+1/2 defined by for α = 0, . . ., N by

Nα+1/2 = N(Uα+1/2, ξ) =
Gα+1/2

c2
χ0

(
ξ − uα+1/2

c
,
γ − vα+1/2

c

)
=
Gα+1/2

gπh
1(ξ−uα+1/2)2+(γ−vα+1/2)2≤2gh =

Gα+1/2

h
Mα+1/2, (4.14)

where Gα+1/2 is defined by (3.6) and uα+1/2,vα+1/2 are given by (3.7). The quantity Nα+1/2 satisfies the
following moment relations

∫
R2

1
ξ
γ

Nα+1/2dξdγ =

 Gα+1/2

uα+1/2Gα+1/2

vα+1/2Gα+1/2

 ,

∫
R2

(
ξ2

2
γ2

2

)
Nα+1/2dξdγ =


(
u2
α+1/2

2 + g
4h

)
Gα+1/2(

v2α+1/2

2 + g
4h

)
Gα+1/2

 . (4.15)

Notice that from (3.6), we can give a kinetic interpretation on the exchange terms under the form

Gα+1/2 = −
N∑
j=1

(
α∑
p=1

lp − 1j≤α

)∫
R2

(
ξ
γ

)
.∇x,yMjdξdγ, (4.16)

for α = 1, . . ., N .
Then we have the two following results.

Proposition 4.3. The functions uN defined by (3.3) and h are strong solutions of the system (3.4) and (3.5)
if and only if the sets of equilibria {Mα}Nα=1, {Nα+1/2}Nα=0 are solutions of the kinetic equations defined by

(Bα)
∂Mα

∂t
+
(
ξ
γ

)
.∇x,yMα − g∇x,yzb.∇ξ,γMα −Nα+1/2 +Nα−1/2 = Qα, (4.17)

for α = 1, . . ., N . The quantities Qα = Qα(t, x, y, ξ, γ) are “collision terms” equal to zero at the macroscopic
level, i.e. they satisfy a.e. for values of (t, x, y)∫

R2
Qαdξdγ =

∫
R2
ξQαdξdγ =

∫
R2
γQαdξdγ = 0. (4.18)
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Proposition 4.4. The solutions of (4.17) are entropy solutions if

∂H(Mα)
∂t

+
(
ξ
γ

)
.∇x,yH(Mα)− g∇x,yzb.∇ξ,γH(Mα) ≤ (H(Nα+1/2)−H(Nα−1/2)), (4.19)

with the notation H(M) = H(M, ξ, γ, zb) and H defined by (4.12). The integration in ξ, γ of relation (4.19)
gives

∂Eα
∂t

+∇x,y.uα
(
Eα +

g

2
hαh

)
≤ lα

( |uα+1/2|2

2
+ gzb

)
Gα+1/2 − lα

( |uα−1/2|2

2
+ gzb

)
Gα−1/2.

Proof of Proposition 4.3. The proof relies on averages w.r.t the variables ξ, γ of equation (4.17) against the
vector (1, ξ, γ)T . Using relations (4.11), (4.14) and (4.15) and the properties of the collision terms (4.18), the
quantities ∫

R2
(Bα) dξdγ,

∫
R2
ξ(Bα) dξdγ, and

∫
R2
γ(Bα) dξdγ,

respectively give equations (3.14) and (3.5). The sum for α = 1 to N of equations (3.14) with (3.6) gives (3.4)
that completes the proof. �

Proof of Proposition 4.4. The proof is obtained multiplying (4.17) by H ′α(Mα, ξ, γ, zb). Indeed, it is easy to see
that

H ′α(Mα, ξ, γ, zb)
∂Mα

∂v
=

∂

∂v
Hα(Mα, ξ, γ, zb),

for v = t, x, y, ξ, γ. Likewise for the quantity H ′α(Mα, ξ, γ, zb)Nα+1/2, we have

H ′α(Mα, ξ, γ, zb)Nα+1/2 = H(Nα+1/2, ξ, γ, zb).

So finally, equation (4.17) multiplied by H ′α(Mα, ξ, γ, zb) gives

∂Hα

∂t
+
(
ξ
γ

)
.∇x,yHα − g∇x,yzb.∇ξ,γHα ≤

(
ξ2 + γ2

2
+ gzb

)
(Nα+1/2 −Nα−1/2).

It remains to calculate the sum of the preceding relations from α = 1, . . ., N and to integrate the obtained
relation in ξ, γ over R2 that completes the proof. �

Remark 4.5. If we introduce a (2N + 1)×N matrix K(ξ, γ) defined by

K1,j = 1, Ki+1,j = ξδi,j , Ki+N+1,j+N = γδi,j ,

for i, j = 1, . . ., N with δi,j the Kronecker symbol. Then, using Proposition 4.3, we can write

U =
∫

R2
K(ξ, γ)M(ξ, γ)dξdγ, F (U) =

∫
R2

(
ξ
γ

)
K(ξ, γ)M(ξ, γ)dξdγ, (4.20)

Se(U) =
∫

R2
K(ξ, γ)N(ξ, γ)dξdγ, (4.21)

with M(ξ, γ) = (M(U1, ξ, γ), . . .,M(UN , ξ, γ))T and

N(ξ, γ) =

 N3/2(ξ, γ)−N1/2(ξ, γ)
...

NN+1/2(ξ, γ)−NN−1/2(ξ, γ)

 .

Hence, using the above notations, the layer-averaged Euler system (3.4) and (3.5) can be written under the
form ∫

R2
K(ξ, γ)

(
∂M(ξ, γ)

∂t
+
(
ξ
γ

)
.∇x,yM(ξ, γ)− g∇x,yzb.∇ξ,γM −N(ξ, γ)

)
dξdγ = 0.
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5. Numerical scheme

The numerical scheme for the model (3.35) proposed in this section extends the results presented by some of
the authors in [4, 7, 9, 10]. Compared to these previous results, it has the following advantages

– it gives a 3D approximation of the Navier–Stokes system whereas 2D situations (x, y) and (x, z) where
considered in [4, 9, 10],

– the implicit treatment of the vertical exchanges terms gives a bounded CFL condition even when the water
depth vanishes,

– the kinetic interpretation, on which is based the numerical scheme, is also valid for the vertical exchange
terms – that was not the case in [9, 10] – and allows to derive a robust and accurate numerical scheme,

– the numerical approximation of the system given in (3.35) is endowed with strong stability properties (well-
balancing, positivity of the water depth, . . . ),

– convergence curves towards a 3D non-stationary analytical solution with wet-dry interfaces have been
obtained (see Sect. 6.2.1).

First, we focus on the Euler part of the system (3.35) then in Section 5.6, a numerical scheme for the viscous
terms is proposed.

Notice that, as a consequence of the layer-averaged discretization, the system (3.35) and the Boltzmann
type equation (4.17) are only 2D (x, y) partial differential equations with source terms. Hence, the spacial
approximation of the considered PDEs is performed on a 2D planar mesh.

5.1. Semi-discrete (in time) scheme

We consider discrete times tn with tn+1 = tn+ ∆tn. For the time discretisation of the layer-averaged Navier–
Stokes system (3.35) we adopt the following scheme

Un+1 = U −∆tn (∇x,y.F (U)− Sb(U)) + ∆tnSn+1
e + ∆tnSn+p

v,f , (5.1)

where the superscript n has been omitted and the integer p = 0, 1/2, 1 will be precised below.
Using the expressions (3.24) and (3.25) for the layer averaged model, the semi-discrete in time scheme (5.1)

writes

hn+1 = hn+1/2 = h−∆tn
N∑
α=1

∇x,y.(hαuα), (5.2)

(hαuα)n+1/2 = hαuα −∆tn
(
∇x,y. (hαuα ⊗ uα) +∇x,y

(g
2
hhα

)
+ ghα∇x,yzb

)
, (5.3)

(hαuα)n+1 = (hαuα)n+1/2 −∆tn
(
un+1
α+1/2Gα+1/2 − un+1

α−1/2Gα−1/2 +∇x,y.
(
hn+p
α Σ0,n+p

α

)
− Tn+p

α + Λα+1/2

un+p
α+1 − un+p

α

hn+p
α+1 + hn+p

α

− Λα−1/2

un+p
α − un+p

α−1

hn+p
α + hn+p

α−1

− καun+p
α +Wn+p

α ts

)
, (5.4)

Gα+1/2 = −
N∑
j=1

(
α∑
p=1

lp − 1j≤α

)
∇x,y.(hjuj), (5.5)

for α = 1, . . ., N . The vertical velocities {wα}Nα=1 are defined by (3.13). The first two equations (5.2) and (5.3)
consist in an explicit time scheme where the horizontal fluxes and the topography source term are taken into
account whereas in equation (5.4) an implicit treatment of the exchange terms between layers is proposed. The
implicit part of the scheme requires to solve a linear problem (see Lem. 5.1) but, on the contrary of previous
work of some of the authors [10], it implies that the CFL condition (5.31) no more depends on the exchange
terms.
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When ν = κ = 0 in equation (5.4), equations (5.2)–(5.4) correspond to the layer-averaged of the Euler system.
The choice p = 1 (resp. p = 1/2) in equation (5.4) corresponds to an implicit (resp. semi-implicit) treatment
of the viscous and friction terms whereas the choice p = 0 implies an explicit treatment and requires a CFL
condition. Notice that

– the implicit or semi-implicit treatment of the viscous terms requires to solve a system that is linear since
hn+1 is known from the mass conservation equation,

– the explicit discretisation is simpler to implement but implies a restrictive CFL when the spatial discretisation
(vertical and horizontal) becomes fine. In the context of geophysical flows, this limitation is rarely severe. In
particular, the CFL condition induced by the explicit treatment of the viscous terms is less restrictive than
the one coming from the advection part (see Eq. (5.31)) in all the numerical tests of Section 6.

5.2. Space discretization

Let Ω denote the computational domain with boundary Γ, which we assume is polygonal. Let Th be a
triangulation of Ω for which the vertices are denoted by Pi with Si the set of interior nodes and Gi the set of
boundary nodes.

For the space discretization of the system (5.2)–(5.4), we use a finite volume technique for the Euler part –
that is described below – and a finite element approach –P1 on Th – for the viscous part that is described in
Section 5.6.

5.3. Finite volume formalism for the Euler part

In this section and in Section 5.4, we propose a space discretization for the model (5.2)–(5.4) without the
viscous and friction terms i.e. the system

hn+1 = hn+1/2 = h−∆tn
N∑
α=1

∇x,y.(hαuα), (5.6)

(hαuα)n+1/2 = hαuα −∆tn
(
∇x,y. (hαuα ⊗ uα) +∇x,y

(g
2
hhα

)
+ ghα∇x,yzb

)
, (5.7)

(hαuα)n+1 = (hαuα)n+1/2 −∆tn
(
un+1
α+1/2Gα+1/2 − un+1

α−1/2Gα−1/2

)
, (5.8)

completed with (5.5).
We recall now the general formalism of finite volumes on unstructured meshes.
The dual cells Ci are obtained by joining the centers of mass of the triangles surrounding each vertex Pi. We

use the following notations (see Fig. 2):

– Ki, set of subscripts of nodes Pj surrounding Pi,
– |Ci|, area of Ci,
– Γij , boundary edge between the cells Ci and Cj ,
– Lij , length of Γij ,
– nij , unit normal to Γij , outward to Ci (nji = −nij).

If Pi is a node belonging to the boundary Γ, we join the centers of mass of the triangles adjacent to the
boundary to the middle of the edge belonging to Γ (see Fig. 2) and we denote

– Γi, the two edges of Ci belonging to Γ,
– Li, length of Γi (for sake of simplicity we assume in the following that Li = 0 if Pi does not belong to Γ),
– ni, the unit outward normal defined by averaging the two adjacent normals.

We define the piecewise constant functions Un(x, y) on cells Ci corresponding to time tn and zb(x, y) as

Un(x, y) = Uni , zb(x, y) = zb,i, for (x, y) ∈ Ci, (5.9)
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Figure 2. (a) Dual cell Ci and (b) Boundary cell Ci.

with Uni = (hni , q
n
x,1,i, . . ., q

n
x,N,i, q

n
y,1,i, . . ., q

n
y,N,i)

T i.e.

Uni ≈
1
|Ci|

∫
Ci

U(tn, x, y)dxdy, zb,i ≈
1
|Ci|

∫
Ci

zb(x, y)dxdy.

We will also use the notation

Unα,i ≈
1
|Ci|

∫
Ci

Uα(tn, x, y)dxdy,

with Uα defined by (4.9). A finite volume scheme for solving the system (5.6) and (5.7) is a formula of the form

U
n+1/2
i = Ui −

∑
j∈Ki

σi,jFi,j − σiFe,i, (5.10)

where using the notations of (5.1) ∑
j∈Ki

Li,jFi,j ≈
∫
Ci

∇x,y.F (U)dxdy, (5.11)

with

σi,j =
∆tnLi,j
|Ci|

, σi =
∆tnLi
|Ci|

·

Here we consider first-order explicit schemes where

Fi,j = F (Ui, Uj , zb,i − zb,j ,ni,j). (5.12)

and

Fi,j = F (Ui, Uj , zb,i − zb,j ,ni,j) =

 F (U1,i, U1,j , zb,i − zb,j ,ni,j)
...

F (UN,i, UN,j , zb,i − zb,j ,ni,j)

 (5.13)

and for the boundary nodes

Fe,i = F (Ui, Ue,i,ni) =

 F (U1,i, U1,e,i,ni)
...

F (UN,i, UN,e,i,ni)

 . (5.14)
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Relation (5.10) tells how to compute the values Un+1/2
i knowing Ui and discretized values zb,i of the topog-

raphy. Following (5.11), the term Fi,j in (5.10) denotes an interpolation of the normal component of the flux
F (U).ni,j along the edge Ci,j . The functions F (Ui, Uj , zb,i−zb,j ,ni,j) ∈ R2N+1 are the numerical fluxes, see [19].

In the next section we define F(Ui, Uj , zb,i − zb,j ,ni,j) using the kinetic interpretation of the system. The
computation of the value Ui,e, which denotes a value outside Ci (see Fig. 2b), defined such that the boundary
conditions are satisfied, and the definition of the boundary flux F (Ui, Ue,i,ni) are described Section 5.7. Notice
that we assume a flat topography on the boundaries i.e. zb,i = zb,i,e.

5.4. Discrete kinetic equation

The choice of a kinetic scheme is motivated by several arguments. First, the kinetic interpretation is a
suitable starting point for building a stable numerical scheme. We will prove in Section 5.4 that the proposed
kinetic scheme preserves positivity of the water depth and ensures a discrete local maximum principle for a
tracer concentration (temperature, salinity, . . .). Second, the construction of the kinetic scheme does not need
the computation of the system eigenvalues. This point is very important here since these eigenvalues are not
available in explicit analytical form, and they are hardly accessible even numerically. Furthermore, as previously
mentioned, hyperbolicity of the multilayer model may not hold, and the kinetic scheme allows overcoming this
difficulty.

5.4.1. Without topography

In a first step we consider a situation with flat bottom. Following Proposition 4.1, the model (3.4) and (3.5)
reduces, for each layer, to a classical Saint-Venant system with exchange terms and its kinetic interpretation
(see Eq. (4.17)) is given by

∂Mα

∂t
+
(
ξ
γ

)
.∇x,yMα −Nα+1/2 +Nα−1/2 = Qα, α ∈ {1, . . ., N}, (5.15)

with the notations defined in Section 4.2.
Let Ci be a cell, see Fig. 2. The integral over Ci of the convective part of the kinetic equation (5.15) gives∫

Ci

(
∂Mα

∂t
+
(
ξ
γ

)
.∇x,yMα

)
dxdy ≈ |Ci|

∂Mα,i

∂t
+
∑
j∈Ki

∫
Γi,j

Mα,i,jdl, (5.16)

with Mα,i = M(Uα,i, ξ, γ), ni,j being the outward normal to the cell Ci. The quantity Mα,i,j is defined by the
classical kinetic upwinding

Mα,i,j = Mα,iζi,j1ζi,j≥0 +Mα,jζi,j1ζi,j≤0,

with ζi,j =
(
ξ γ
)T
.ni,j .

Therefore, the kinetic scheme applied for equation (5.15) is given by

f
n+1/2−
α,i =

1− ∆tn

|Ci|
∑
j∈Ki

Li,jζi,j1ζi,j≥0

Mα,i −
∆tn

|Ci|
∑
j∈Ki

Li,jMα,jζi,j1ζi,j≤0, (5.17)

fn+1−
α,i = f

n+1/2−
α,i + ∆tn

(
Nn+1−
α+1/2,i −N

n+1−
α−1/2,i

)
, (5.18)

with the exchange terms {Nn+1−
α+1/2,i}

N
α=0 defined by

Nn+1−
α+1/2,i(ξ, γ) =

Gα+1/2,i

hi
fn+1−
α+1/2,i. (5.19)
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Following (3.7) we can write

fn+1−
α+1/2,i =

{
fn+1−
α,i if Gα+1/2 ≤ 0
fn+1−
α+1,i if Gα+1/2 > 0

leading to

Nn+1−
α+1/2,i(ξ, γ) =

|Gα+1/2,i|+
hi

fn+1−
α+1,i −

|Gα+1/2,i|−
hi

fn+1−
α,i .

Notice that the previous definition is consistent with (4.14). From (4.16), we get

Gα+1/2,i = − 1
|Ci|

N∑
k=1

(
α∑
p=1

lp − 1k≤α

) ∑
j∈Ki

Li,j

∫
R2

(
Mk,iζi,j1ζi,j≥0 +Mk,jζi,j1ζi,j≤0

)
dξdγ.

By analogy with the computations in (4.11), we can recover the macroscopic quantities Un+1
α,i at time tn+1

by integration of the relation (5.18)

Un+1
α,i =

∫
R2

1
ξ
γ

 fn+1−
α,i dξdγ. (5.20)

The scheme (5.17) and the definition (5.20) allow to complete the definition of the macroscopic scheme (5.10),
(5.13) and (5.14) with the numerical flux given by the flux vector splitting formula [17]

Fi,j = F+(Uni ,ni,j) + F−(Unj ,ni,j)

=
∫

R2
K(ξ, γ)Miζi,j1ζi,j≥0dξdγ +

∫
R2
K(ξ, γ)Mjζi,j1ζi,j≤0dξdγ, (5.21)

where K(ξ, γ) is defined in Remark 4.5 and Mi = (M1,i, . . . ,MN,i)T .
Using (5.19), we rewrite the step (5.18) under the form

(IN + ∆tGN,i) fn+1− = fn+1/2−,

where IN is the identity matrix of size N and GN,i is defined by

GN,i =



− |G3/2,i|−
hn+1
1,i

− |G3/2,i|+
hn+1
1,i

0 0 · · · 0

|G3/2,i|−
hn+1
2,i

. . . . . . 0 · · · 0

0
. . . . . . . . . 0 0

... 0 |Gα−1/2,i|−
hn+1
α,i

− |Gα+1/2,i|−−|Gα−1/2,i|+
hn+1
α,i

− |Gα+1/2,i|+
hn+1
α,i

0
...

. . . 0
. . . . . . − |GN−1/2,i|+

hn+1
N−1,i

0 · · · 0 0 |GN−1/2,i|−
hn+1
N,i

|GN−1/2,i|+
hn+1
N,i


.

Hence, the resolution of the discrete kinetic equation (5.18) requires to inverse the matrix(
IN + ∆tGN,i 0

0 IN + ∆tGN,i

)
and we have the following lemma.
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Lemma 5.1. The matrix IN + ∆tGN,i

(i) is invertible for any hn+1
i > 0,

(ii) (IN + ∆tGN,i)−1 has only positive coefficients,
(iii) for any vector T with non negative entries i.e. Tα ≥ 0, for 1 ≤ α ≤ N , one has

‖(IN + ∆tGN,i)−tT‖∞ ≤ ‖T‖∞.

Remark 5.2. Compared to an explicit treatment of the vertical exchanges terms as presented in [9, 10], the
implicit scheme (5.18) requires to invert for each cell a small matrix whose size corresponds to the number of
layers. Depending on the type of simulation carried out, it increases the computational costs e.g. for the tsunami
simulation the difference is around 20%.

But it is worth noticing that the explicit treatment of the vertical exchanges terms can lead to severe
constraints on the CFL condition since the quantity

|Gα+1/2,i|
hi

,

is not bounded, see Proposition 5.2 from [10].

Proof of Lemma 5.1. (i) For any hn+1
i > 0, the matrix IN + ∆tGN,i is a strictly dominant diagonal matrix and

hence it is invertible.

(ii) Denoting Gd
N,i (resp. Gnd

N,i) the diagonal (resp. non diagonal) part of GN,i we can write

IN + ∆tGN,i = (IN + ∆tGd
N,i)

(
IN − (IN + ∆tGd

N,i)
−1(−∆tGndN,i)

)
,

where all the entries of the matrix JN,i = (IN + ∆tGd
N,i)

−1(−∆tGnd
N,i), are non negative and less than 1.

And hence, we can write

(IN + ∆tGN,i)−1 =
∞∑
k=0

JkN,i,

proving all the entries of (IN + ∆tGN,i)−1 are non negative.
(iii) Let us consider the vector 1 whose entries are all equal to 1. Since we have

(IN + ∆tGN,i)t1 = 1,

we also have 1 = (IN + ∆tGN,i)−t1. Now let T be a vector whose entries {Tα}1≤α≤N are non negative,
then

(IN + ∆tGN,i)−tT ≤ (IN + ∆tGN,i)−t1‖T‖∞ = 1‖T‖∞,

that completes the proof.

�

5.4.2. With topography

The hydrostatic reconstruction scheme (HR scheme for short) for the Saint-Venant system has been introduced
in [6] in the 1D case and described in 2D for unstructured meshes in [4]. The HR in the context of the kinetic
description for the Saint-Venant system has been studied in [7].

In order to take into account the topography source and to preserve relevant equilibria, the HR leads to a
modified version of (5.10) under the form

U
n+1/2
i = Uni −

∑
j∈Ki

σi,jF∗i,j − σiFi,e +
∑
j∈Ki

σi,jS∗i,j , (5.22)
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where

F∗i,j = F (U∗i,j , U
∗
j,i,ni,j), S∗i,j = S(Ui, U∗i,j ,ni,j) =


0

g
2 l1(h∗2i,j − h2

i )ni,j
...

g
2 lN (h∗2i,j − h2

i )ni,j

 , (5.23)

with

z∗b,i,j = max(zb,i, zb,j), h∗i,j = max(hi + zb,i − z∗b,i,j , 0),

U∗i,j = (h∗i,j , l1h
∗
i,ju1,i, . . ., lNh

∗
i,juN,i, l1h

∗
i,jv1,i, . . ., lNh

∗
i,jvN,i)

T . (5.24)

We would like here to propose a kinetic interpretation of the HR scheme, which means to interpret the above
numerical fluxes as averages with respect to the kinetic variables of a scheme written on a kinetic function f .
More precisely, we would like to approximate the solution to (4.17) by a kinetic scheme such that the associated
macroscopic scheme is exactly (5.22) and (5.23) with homogeneous numerical flux F given by (5.21). We denote
M∗α,i,j = M(U∗α,i,j , ξ, γ) for any α = 1, . . ., N and we consider the scheme

f
n+1/2−
α,i = Mα,i −

∆tn

|Ci|
∑
j∈Ki

Li,jζi,j1ζi,j≥0M
∗
α,i,j −

∆tn

|Ci|
∑
j∈Ki

Li,jM
∗
α,j,iζi,j1ζi,j≤0,

− ∆tn

|Ci|
∑
j∈Ki

Li,j(Mα,i −M∗α,i,j)θα,i,j , (5.25)

fn+1−
α,i = f

n+1/2−
α,i + ∆tn

(
N∗,n+1−
α+1/2,i −N

∗,n+1−
α−1/2,i

)
, (5.26)

where

θα,i,j =
(
ξ − uα,i
γ − vα,i

)
.ni,j .

For the exchange terms, by analogy with (5.19) we define

N∗,n+1−
α+1/2,i(ξ, γ) =

G∗α+1/2,i

hi
fn+1−
α+1/2,i, (5.27)

and using (4.16) we get

G∗α+1/2,i = − 1
|Ci|

N∑
k=1

(
α∑
p=1

lp − 1k≤α

) ∑
j∈Ki

Li,j

∫
R2

(
M∗k,i,jζi,j1ζi,j≥0 +M∗k,i,jζi,j1ζi,j≤0

)
dξdγ.

It is easy to see that in the previous formula, we have the moment relations∫
R2

(Mα,i −M∗α,i,j)θα,i,jdξdγ = 0, (5.28)∫
R2

(
ξ
γ

)
(Mα,i −M∗α,i,j)θα,i,jdξdγ =

g

2
lα(h∗2i,j − h2

i )ni,j . (5.29)

Using again (5.20), the integration of the set of equations (5.25) and (5.26), for α = 1, . . ., N , multiplied
by K(ξ, γ) with respect to ξ,γ then gives the HR scheme (5.22) and (5.23) with (5.21) and (5.24). Thus as
announced, (5.25) and (5.26) is a kinetic interpretation of the HR scheme in 3D for an unstructured mesh.

There exists a velocity vm ≥ 0 such that for all α, i,

|ξ| ≥ vm or |γ| ≥ vm ⇒M(Uα,i, ξ, γ) = 0. (5.30)
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This means equivalently that |uα,i|+ |vα,i|+
√

2ghi ≤ vm. We consider a CFL condition strictly less than one,

σivm ≤ β <
1
2

for all i, (5.31)

where σi = ∆tn
∑
j∈Ki Li,j/|Ci|, and β is a given constant.

Then the following proposition holds.

Proposition 5.3. Under the CFL condition (5.31), the scheme (5.25) and (5.26) verifies the following prop-
erties.

(i) The macroscopic scheme derived from (5.25) to (5.26) using (5.20) is a consistent discretization of the
layer-averaged Euler system (3.4) and (3.5).

(ii) The kinetic function remains nonnegative i.e.

fn+1−
α,i ≥ 0, ∀(ξ, γ) ∈ R2, ∀i, ∀α.

(iii) The scheme (5.25) and (5.26) is kinetic well balanced i.e. at rest

fn+1−
α,i = Mα,i, ∀(ξ, γ) ∈ R2, ∀i, ∀α = 1, . . ., N. (5.32)

Proof of Proposition 5.3. (i) Since the Boltzmann type equations (4.17) are almost linear transport equations
with source terms, the discrete kinetic scheme (5.25) and (5.26) is clearly a consistent discretization of (4.17).
And therefore using the kinetic interpretation given in Proposition 4.3, the macroscopic scheme obtained
from (5.25) to (5.26) using (5.20) is a consistent discretization of the layer-averaged Euler system (3.4) and
(3.5).

(ii) In (5.25) and (5.26) we have
∆tn

|Ci|
∑
j∈Ki

Li,jM
∗
α,j,iζi,j1ζi,j≤0 ≤ 0,

and the HR (5.24) ensures M∗α,i,j ≤Mα,i, ∀(ξ, γ) ∈ R2,∀α leading to

f
n+1/2−
α,i ≥

1− ∆tn

|Ci|
∑
j∈Ki

Li,j
(
ζi,j1ζi,j≥0 + θα,i,j1θα,i,j≥0

)Mα,i,

But ζi,j1ζi,j≥0 ≤ max{|ξ|, |γ|}, θα,i,j1θα,i,j≥0 ≤ max{|ξ − uα,i|, |γ − vα,i|} and therefore

∆tn

|Ci|
∑
j∈Ki

Li,j
(
ζi,j1ζi,j≥0 + θα,i,j1θα,i,j≥0

)
≤ σi(max{|ξ|, |γ|}+ max{|ξ − uα,i|, |γ − vα,i|}) ≤ 1,

where (5.30) and (5.31) have been used, proving f
n+1/2−
α,i ≥ 0 for any ξ ∈ R and any α ∈ {1, . . ., N}.

Now using the results of Lemma 5.1, it ensures that fn+1−
α,i defined by (5.26) satisfies fn+1−

α,i ≥ 0 for any
(ξ, γ) ∈ R2 and any α ∈ {1, . . ., N}, proving (ii).

(iii) Considering the situation at rest i.e. uα,i = vα,i = 0, ∀α, i and hi + zb,i = hj + zb,j , ∀i, j we have

Mα,i = M∗α,i,j , ∀α, i, j.

From (5.25) to (5.26), this gives (5.32).

�
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5.5. Macroscopic scheme

The numerical scheme for the system (5.6)–(5.8) is given by (5.20), (5.25), (5.26) and requires to calculate
fluxes having the form

Fsv(U) =

 Fh
Fhu
Fhv

 =
∫
nxξ+nyγ≥0

 1
ξ
γ

 (nxξ + nyγ)M(U, ξ, γ)dξdγ.

with M given by (4.10), nx and ny being the components of a normal unit vector n. Defining the change of
variables

ξ = u+ cz1, γ = v + cz2,

we can write

Fsv(U) = h

∫
nx(cz1+u)+ny(cz2+v)≥0

(nx(cz1 + u) + ny(cz2 + v))

 1
u+ cz1

v + cz2

χ0(z1, z2)dz1dz2,

where χ0 is defined by (4.7). A second change of variables y1 = nxz1 + nyz2, y2 = nxz2 − nyz1, ũ = nxu+ nyv
gives

Fsv(U) = h

∫
{y1≥− ũc }×R

(ũ+ cy1)

 1
u+ cnxy1

v + cnyy1

χ0(y1, y2)dy1dy2, (5.33)

since χ0 is odd. The details of the computations of formula (5.33) is given in Appendix B.
Using the properties obtained at the kinetic level for the resolution of the system (3.4) and (3.5), the following

proposition holds.

Proposition 5.4. Under the CFL condition (5.31), the scheme (5.20), (5.25) and (5.26) satisfies the following
properties.

(i) The macroscopic scheme derived from (5.25) to (5.26) using (5.20) is a consistent discretization of the
layer-averaged Euler system (3.4) and (3.5).

(ii) The water depth remains nonnegative i.e.

hn+1
i ≥ 0, ∀i, when hni ≥ 0 ∀i.

(iii) The scheme (5.20), (5.25) and (5.26) is well-balanced i.e. it preserves the so-called “lake at rest” solution.

Proof of Proposition 5.4. The proof is similar to the one given in Proposition 5.3. �

5.6. The discrete layer-averaged Navier–Stokes system

In this section, we detail the space discretization of the viscous terms. Several expressions have been obtained
for the viscous terms, see Section 3.2. In this section, we give a numerical scheme for the model (5.4), rewriting
it under the form

(hαuα)n+1 = h̃αuα + ∆tnSv,f (U), (5.34)

with Sv,f (U) = (Sv,f,1, . . ., Sv,f,N )T and

h̃αuα = hαuα −∆tn
(
∇x,y. (hαuα ⊗ uα)−∇x,y

(g
2
hhα

)
− ghα∇x,yzb

+ un+1
α+1/2Gα+1/2 − un+1

α−1/2Gα−1/2

)
,

Sv,f,α = ∇x,y.
(
hαΣ0

α

)
+ Γα+1/2(uα+1 − uα)− Γα−1/2(uα − uα−1)− καuα +Wαts,



2004 S. ALLGEYER ET AL.

with the definitions (3.26), (3.27), (3.32), (3.33) and (3.30) for T0
α, Γα±1/2. It remains to give a fully discrete

scheme for the viscous and friction terms {Sv,f,α}.
The discretization of (5.34) is done using a finite element/finite difference approximation obtained as follows.

We depart form the triangulation defined in Section (5.2) and we use the cells values of the variables – inherited
from the finite volume framework – to define a P1 approximation of the variables.

Notice that, compared to the advection and pressure terms, the discretization of the viscous terms raises less
difficulties and we propose a stable scheme that will be extended to more general rheology terms [27] and more
completely analyzed in a forthcoming paper.

Using a classical P1 finite element type approximation with mass lumping of equation (5.34), we get

Un+1
α = Ũα −∆tn (Kα+1Uα+1 +KαUα +Kα−1Uα−1)

+ ∆tnGα+1/2(Uα+1 −Uα)−∆tnGα−1/2(Uα −Uα−1)−∆tnκαUα + ∆tnWαts, (5.35)

with the matrices

Kα,ji =
ν

2

∫
Ω

(
hα

hα+1 + hα
+

hα
hα + hα−1

)
∇x,yϕi.∇x,yϕj dxdy,

Kα±1,ji =
να±1/2

2

∫
Ω

hα±1

hα+1 + hα
∇x,yϕi.∇x,yϕj dxdy,

Gα+1/2,ji = να+1/2

∫
Ω

1 + |∇x,yzα+1/2|2

hα+1 + hα
ϕi.ϕjdxdy,

where ϕi, ϕj are the basis functions. We have presented an explicit in time version of (5.35) that is stable under
a classical CFL condition. An implicit or semi-implicit version of (5.35) can also be used.

The main purpose of this paper is to propose a stable and robust numerical approximation of the incompress-
ible Euler system with free surface. Voluntarily, we give few details concerning the numerical approximation of
the dissipative terms:

– the viscous and friction terms are dissipative and hence a reasonable approximation leads to a stable numer-
ical scheme.

– In this paper, we consider a simplified Newtonian rheology for the fluid, the numerical approximation of the
general (layer-averaged) rheology [27] will be studied in a forthcoming paper.

5.7. Boundary conditions

The contents of this section slightly differ from previous works of one of the authors [26] and valid for the
classical Saint-Venant system. First, we focus on the boundary conditions for the layer-averaged Euler system
i.e. the system (5.2) and (5.3) for ν = 0, κ = 0 and then for the viscous part.

5.7.1. Layer-averaged Euler system

In this section we detail the computation of the boundary flux F(Ui,Ue,i,ni) appearing in (5.10), (5.13) and
(5.14). The variable Un

i,e can be interpreted as an approximation of the solution in a ghost cell adjacent to the
boundary. As before we introduce the vector

Ui,e =
(
hni,e, (hu)1,i,e, . . ., (hu)N,i,e, (hv)1,i,e, . . ., (hv)N,i,e

)T
,

and we will use the flux vector splitting form associated to the kinetic formulation (5.21)

F(Ui, Ui,e,ni) = F+(Ui,ni) + F−(Ui,e,ni) (5.36)

with Uni,e defined according to the boundary type.
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Solid wall. If we consider a node i0 belonging to a solid wall, we prescribe a slip condition written

uα · ni0 = 0, (5.37)

for α = 1, . . ., N . We assume the continuity of the water depth hi0,e = hi0 and of the tangential component of
velocity.

From (5.33) with (5.37) we obtain

F+
h (Uα,i0) + F−h (Uα,i0,e) = 0,

and (
F+
hu(Uα,i0) + F−hu(Uα,i0,e)
F+
hv(Uα,i0) + F−hv(Uα,i0,e)

)
.ni0 =

ghα,i0hi0
2

,

(
F+
hu(Uα,i0) + F−hu(Uα,i0,e)
F+
hv(Uα,i0) + F−hv(Ue,α,i0)

)
.ti0 = 0,

for α = 1, . . ., N for a vector ti0 orthogonal to ni0 . The condition (5.37) is therefore prescribed weakly but a
posteriori, in order to be sure that (5.37) is satisfied, we can apply

uα,i0,e = uα,i0 − (uα,i0 .ni0)ni0 .

Fluid boundary. Even if the considered model is more complex than the Shallow water system, we can consider
that the type of the flow depends, for each layer, on the value of the Froud number Frα = |uα|/

√
gh, a flow is

said torrential, for |uα| >
√
gh and fluvial, for |uα| <

√
gh.

Generally, for the fluid boundaries, the conditions prescribed by the user depend on the type of the flow
defined by this criterion.

We have also to notice that with n the outward unit normal to the boundary edge, an inflow boundary
corresponds to uα · n < 0 and an outflow one to uα · n > 0.

We will treat the following cases: for a fluvial flow boundary, we distinguish the cases where the flux or the
water depth are given, while for a torrential flow we distinguish the inflow or outflow boundaries.

Fluvial boundary. Flux given. We consider first a fluvial boundary, so we assume that

|uα| <
√
gh. (5.38)

If for each layer, the flux qg,α is given, then we wish to impose

(Fh(Uα,i) + Fh(Ue,α,i)) .ni = qg,α.ni, Fh(Ue,α,i).ti = qg,α.ti, (5.39)

with ni.ti = 0. The value qg,α depends on the value of the prescribed flux along the vertical axis.
If one directly imposes (5.39), it leads to instabilities (especially because the numerical values are not nec-

essarily in the regime of validity of this condition). We propose to discretize it in a weak form. We denote

a1 = qg,α.ni − Fh(Uα,i).ni. (5.40)

If a1 ≥ 0, we prescribe

Fh(Ue,α,i) = 0, Fhu(Ue,α,i) = 0, and Fhv(Ue,α,i) = 0.

If a1 < 0, we have to write a third equation to be able to compute the three components of Ue,α and by
analogy with what is done for the Saint-Venant system – where the Riemann invariant related to the outgoing
characteristic is preserved – we assume the quantity uα.n is constant though the interface, i.e.

ue,α,i.ni − 2
√
ghe,i = uα,i.ni − 2

√
ghi. (5.41)

As (5.38) is satisfied, the eigenvalue ue,α,i.ni − 2
√
ghe,i is positive.
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We use the equations (5.39) and (5.41) to compute he,i and ue,α,i.ni. We denote a2 = uα,i.ni − 2
√
ghi and

m =
ue,α,i.ni√
ghe,i

· (5.42)

Then the equation (5.41) gives √
ghe,i (m− 2) = a2 (5.43)

and using the definition of Fh (see (B.1)) with (5.39) and (5.40) we have

he,i
π

∫
z≤

−ue,α,i.ni√
ghe,i

2

(
ue,α,i.ni +

√
ghe,i

2
z

)√
1− z2

4
dz = a1, (5.44)

or using (5.41)
ψ(he,i) = a1, (5.45)

with

ψ(he,i) =
he,i
π

∫
z≤

−(2
√
ghe,i+a2)

√
ghe,i

2

(
2
√
ghe,i + a2 +

√
ghe,i

2
z

)√
1− z2

4
dz.

It is easy to see that h 7→ ψ(h) is a growing function of h with ψ(0) = 0 and ψ(+∞) = +∞ and therefore,
equation (5.44) admits a unique solution for any a1 > 0. Using (5.43), equation (5.45) is equivalent to solve
for m

Ψ(m) = a2, (5.46)

with
Ψ(m) = K

m− 2
φ(m)1/3

,

and K =
(√

2ga1

)1/3
φ(m) =

1
π

∫
z≤−

√
2m

(
√

2m+ z)

√
1− z2

4
dz.

In practice, we use a Newton-Raphson algorithm to solve an equivalent form of equation (5.46), namely

m− 2− a2

K
φ(m)1/3 = 0.

Once the above equation has been solved, from (5.42) to (5.43) we deduce

he,i =
1
g

(
a2

m− 2

)2

, ue,α,i.ni =
a2m

m− 2
= m

√
ghe,i.

Remark 5.5. Notice that in the procedure proposed to calculate ue,α,i, he,i, even if he,i represents a total
water depth, a different value of he,i is calculated for each layer α. he,i is only used to ensure (5.39).

Fluvial boundary. Water depth given. We verify that the flow is actually fluvial, i.e.

(uα,i.ni −
√
ghi)(uα,i.ni +

√
ghi) ≤ 0. (5.47)

Since the water depth is given, we write
he,i = hg,i. (5.48)
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We assume the continuity of the tangential component

(hu)e,α,i.ti = (hu)α,i.ti, (5.49)

with ti.ni = 0. To define completely ue,α,i, we assume, as in the previous case, that the Riemann invariant is
constant along the outgoing characteristic (5.41), so we obtain

ue,α,i.ni = uα,i.ni + 2
√
g(
√
hi −

√
hg,i). (5.50)

Sometimes it appears that the numerical values do not satisfy the condition (5.47), then the flow is in fact
torrential and

– if uα,i.ni > 0 , the condition (5.48) cannot be satisfied (see Sect. 6.2.4),
– if uα,i.ni < 0 , one condition is missing and we prescribe ue,α,i.ni = uα,i.ni.

Torrential inflow boundary. For a torrential inflow boundary we assume that the water depth and the flux
are given, then we prescribe

he,i = hg,i, (hu)e,α,i.ti = (hu)g,α,i.ti,

and
(Fh(Uα,i) + Fh(Ue,α,i)) .ni = qg,α.ni = (hu)g,α,i.ni.

In this case we have to compute (hu)e,α,i.ni or ue,α,i.ni. We consider an inflow boundary, so (hu)g,α,i.ni < 0
therefore using the notation (5.40) we have a1 < 0. By analogy with the previous section we denote

m =
ue,α,i.ni√
ghg,i

,

then the equation for m is (see (5.42)–(5.44))

φ(m) =
√

2
g

a1

h
3/2
g,i

·

As in the section entitled Flux given, the above equation has a unique solution m < 2 for a1 < 0.

Torrential outflow boundary. In the case of a torrential outflow boundary, we do not prescribe any condition.
We assume that the two Riemann invariants are constant along the outgoing characteristics leading to

ue,α,i.ni − 2
√
ghe,i = uα,i.ni − 2

√
ghi,

ue,α,i.ni + 2
√
ghe,i = uα,i.ni + 2

√
ghi,

and we deduce he,i = hi, ue,α,i.ni = uα,i.ni. We assume that we also have (hu)e,α,i.ti = (hu)α,i.ti.

5.7.2. Layer-averaged Navier–Stokes system

Because of the fractional step we use, the boundary conditions for the layer-averaged Euler system are, to
some extent, independent from the one used for the rheology terms.

For the resolution of equation (5.34), boundary conditions associated with the operator

∇x,y.(hαT0
α),

have to be specified and usually we prescribe homogeneous Neumann boundary conditions (corresponding to
an imposed stress). Of course, in particular cases, Dirichlet or Robin type boundary conditions can also be
considered.
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5.8. Toward second order schemes

In order to improve the accuracy of the results the first-order scheme defined in Sections 5.3–5.5 can be
extended to a formally second-order one using a MUSCL like extension (see [52]).

5.8.1. Second order reconstruction for the layer-averaged Euler system

In the definition of the flux (5.23), we replace the piecewise constant values Ui,j ,Uj,i by more accurate
reconstructions deduced from piecewise linear approximations, namely the values Ũi,j , Ũj,i reconstructed on
both sides of the interface. The reconstruction procedure is similar to the one used and described in Section 5.1
from [4].

The second order reconstruction is only applied for the horizontal fluxes. For the exchange terms along the
vertical axis involving the quantities Gα±1/2, we keep the first order approximation. Despite this, we recover
over the simulations (see Sects. 6.1 and 6.2) a second order type convergence curve. For this reason, we call this
reconstruction “second order”.

5.8.2. Modified Heun scheme

The explicit time scheme (5.2) and (5.3) used in the previous paragraphs corresponds to a first order explicit
Euler scheme. The second-order accuracy in time is usually recovered by the Heun method [18] that is a slight
modification of the second order Runge–Kutta method. More precisely, for a dynamical system written under
the form

∂y

∂t
= f(y), (5.51)

the Heun scheme consists in defining yn+1 by

yn+1 = y(tn + ∆tn) =
yn + ỹn+2

2
, (5.52)

with
ỹn+1 = yn + ∆tnf(yn, tn), ỹn+2 = ỹn+1 + ∆tnf(ỹn+1, tn+1). (5.53)

But the scheme defined by (5.52) does not preserve the invariant domains. Indeed, the time step being given
by a CFL condition, ∆tn in the relation (5.53) should be replaced by ∆̃t

n+1
i.e. the time step satisfying the CFL

condition and calculated using ỹn+1. Thus in situations where the time step strongly varies from one iteration
to another, the Heun scheme does not preserve the positivity of the scheme.

To overcome this difficulty, we propose an improvement of the Heun scheme

Proposition 5.6. The scheme defined by yn+1 = (1− γ)yn + γỹn+2 with

ỹn+1 = yn + ∆tn1f(yn), ỹn+2 = ỹn+1 + ∆tn2f(ỹn+1),

and

∆tn =
2∆tn1 ∆tn2

∆tn1 + ∆tn2
, γ =

(∆tn)2

2∆tn1 ∆tn2
,

is second order and compatible with a CFL constraint. Since γ ≥ 0, yn+1 is a convex combination of yn and
ỹn+2 so the scheme preserves the positivity. For the previous relations ∆tn1 and ∆tn2 respectively satisfy the CFL
conditions associated with yn and ỹn+1.

When ∆tn1 = ∆tn2 = ∆tn, the scheme reduces to the classical Heun scheme with α = γ = 1/2.

Proof of Proposition 5.6. Using (5.51), a Taylor expansion of y(tn + ∆tn) gives

y(tn + ∆tn) = yn + ∆tnf(yn) +
(∆tn)2

2
f(yn)f ′(yn) +O((∆tn)3).
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Using the definitions given in the proposition, we have

ỹn+2 = yn + (∆tn1 + ∆tn2 ) f(yn) + ∆tn1 ∆tn2f(yn)f ′(yn) +O(∆tn2 (∆tn1 )2),

and a simple calculus gives αyn + βỹn+1 + γỹn+2 − y(tn + ∆tn) = O((∆tn)3), that completes the proof. �

6. Numerical applications

In this section, we use the numerical scheme to simulate several test cases: analytical solutions or in situ
measurements, stationary or non-stationary solutions, for the Euler and Navier–Stokes systems. The obtained
results emphasize the accuracy of the numerical procedure in a wide range of typical applications and its
applicability to a real tsunami case. We also propose simulations of the hydrodynamic regime in a raceway
agitated by a paddlewheel and confront the results with experimental measurements.

The numerical simulations presented in this section have been obtained with the code Freshkiss3D [2] where
the numerical scheme presented in this paper is implemented.

6.1. Stationary analytical solution

First, we compare our numerical model with stationary analytical solutions for the free surface Euler system
proposed by some of the authors in [23].

We consider as geometrical domain a channel (x, y) ∈ [0, xmax] × [0, 2]. The analytical solution given in
Proposition 3.1 from [23] and defined by

zb = zb − h0 −
α2β2

2g sin2(βh0)
, (6.1)

uα,β =
αβ

sin(βh0)
cos(β(z − zb)), (6.2)

vα,β = 0,

wα,β = αβ

(
∂zb
∂x

cos(β(z − zb))
sin(βh0)

+
∂h0

∂x

sin(β(z − zb)) cos(βh0)
sin2(βh)

)
,

with α = 1 m2 s−1, β = 1 m−1, zb = cst, xmax = 20 m and

h0(x, y) =
1
2

+
3
2

1

1 +
(
x− 1

2xmax

)2 − 1
2

1

2 +
(
x− 2

3xmax

)2 , (6.3)

is a stationary regular analytical solution of the incompressible and hydrostatic Euler system with free
surface (2.12), (2.13), (2.4) and (2.5) with pa = 0.

In order to obtain the simulated solution, we consider the topography defined by (6.1), (6.3) and we impose
the following boundary conditions

– solid wall for the two boundaries y = 0 m and y = 2 m,
– given water depth h0(xmax, y) at x = xmax = 20 m,
– given flux defined by (6.2) at x = 0 m.

We have performed the simulations for several unstructured meshes having 290 nodes and 2 layers, 597 nodes
and 4 layers, 1010 nodes and 8 layers, 2112 nodes and 17 layers, see Remark 6.1.

Remark 6.1. In each case where a convergence curve towards an analytical solution is presented, we have pro-
ceeded as follows. First, we choose a sequence of unstructured meshes for the considered horizontal geometrical
domain. Then the number of layers is adapted so that each 3D element of the mesh can be approximatively
considered as a regular polyhedron.
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Figure 3. (a) Surface level of the analytical solution (6.1)–(6.3) and horizontal velocity uα,β ,
(b) error between the analytical solution and the simulated one with the six meshes, first order
(space and time) and second order extension (space and time) schemes. The first and second
order theoretical curves correspond to the dashed lines.

Table 1. Stationary solution: L2 error table and convergence rate for the velocity and the
water depth for each mesh.

Nd.o.f.
First order scheme Second order scheme

L2 errorh Rate L2 error u Rate L2 errorh Rate L2 error u Rate

580 0.0405 – 0.0699 – 0.006 – 0.0092 –
2360 0.0265 1.02 0.0457 0.68 2.716 10−3 1.92 3.214 10−3 1.69
8080 0.0210 0.96 0.0332 0.88 1.721 10−3 1.89 1.521 10−3 2.07
34204 0.0179 0.91 0.0256 0.97 1.24 10−3 1.84 1.24 10−3 1.80

On Figure 3a, we have depicted the features of the analytical solution we use for the convergence test, it
clearly appears on Figure 3a that the velocity profile of the chosen analytical solution varies along the z axis.
The L2 errors for the convergence test and the corresponding convergence rate are given in Table 1. Figure 3b
gives the convergence curve towards the analytical solution i.e. the log(L2-error) of the water depth – at time
T = 300 s when the stationary regime is reached – versus log(ha0/ha) for the first and second-order schemes
and they are compared to the theoretical order (we denote by ha the average edge length and ha0 the average
edge length of the coarser mesh).

Remark 6.2. Following the results given in Section 3.4 from [23], it is possible to obtain stationary analytical
solutions with discontinuities for the Euler system. In this case, the unknowns are not given by algebraic
expressions but are obtained through the resolution of an ODE involving only the water depth h.

The numerical scheme has been used in the context of such a discontinuous analytical solution. As planned,
for the first and second order schemes, we recover a first order convergence of the simulated solution towards
the analytical one because of the discontinuity of the reference solution.

6.2. Non-stationary analytical solutions

In a recent paper [28], some of the authors have proposed time-dependent 3D analytical solutions for the Euler
and Navier–Stokes equations, some of them concern hydrostatic models. We confront our numerical scheme to
these situations where analytical solutions are available.
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6.2.1. Radially-symmetrical parabolic bowl

The Thacker’ analytical solution [50], corresponds to a periodic oscillation in a parabolic bowl. In [28] an
extension of the Thacker’ radially-symmetrical solution to the situation where the velocity field depends on
the vertical coordinate is proposed. This means the proposed solution, described hereafter in Proposition 6.3,
is analytical for the 3D incompressible hydrostatic Euler system but does not correspond to a shallow water
regime.

Proposition 6.3. For some t0 ∈ R, (α, β, γ) ∈ R3
+∗ such that γ < 1 let us consider the functions h, u, v, w, p

defined for t ≥ t0 by

h(t, x, y) = max
{

0,
1
r2
f

(
r2

γ cos(ωt)− 1

)}
, (6.4)

u(t, x, y, z) = x

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)
2(1− γ cos(ωt))

)
, (6.5)

v(t, x, y, z) = y

(
β

(
z − zb −

h

2

)
+

ωγ sin(ωt)
2(1− γ cos(ωt))

)
, (6.6)

p(t, x, y, z) = g(h+ zb − z), (6.7)

with ω =
√

4αg, r =
√
x2 + y2 and with a bottom topography defined by

zb(x, y) = α
r2

2
, (6.8)

and the function f given by

f(z) = −4g
β2

+
2
β2

√
4g2 + cz + β2αg(γ2 − 1)z2,

c being a negative constant such that c ≤ 4g2/(γ − 1). From equation (2.1), the vertical velocity w can be
expressed under the form

w(t, x, y, z) = − ∂

∂x

∫ z

zb

udz − ∂

∂y

∫ z

zb

vdz.

Then h, u, v, w, p as defined previously satisfy the 3D hydrostatic Euler system (2.12) and (2.13) completed
with (2.4) and (2.5).

The geometrical domain is defined by (x, y) ∈ [−L/2, L/2]2 and the chosen parameters are α = 2, β = 1, γ = 0.3,
c = −1, L = 1, the considered analytical solution is depicted on Figure 4. The initial conditions correspond
to (6.4)–(6.7) at time t = t0 = 0 s.

In order to evaluate the convergence rate of the simulated solution hsim towards the analytical one hanal, we
have performed a convergence test, the errors and convergence rates appear over Table 2. The five unstructured
meshes we have considered have respectively 1273 nodes and a single layer, 11 104 nodes and 6 layers, 30 441
nodes and 15 layers, 59 473 nodes and 30 layers and 98 137 nodes and 50 layers, see Remark 6.1. We have
plotted (see Fig. 5) the log(L2-error) over the water depth at time T = 2π/ω s versus log(ha0/ha) for the first
and second-order schemes and they are compared to the theoretical order.

The analytical solution of Proposition 6.3 is non stationary and hence, the errors due to the time scheme
are combined with the one induced by the space discretization. Moreover this test case has a lot of wet/dry
interfaces where the second order reconstruction in space cannot be applied. This can explained the differences
between the theoretical and observed slopes for the convergence tests of the second order schemes, see Table 2
and Figure 5.
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Figure 4. 3D axisymmetrical parabolic bowl: (a) free surface at t = 0 (red), t = T/4 (dark
grey), t = T/2 (blue), with the period T defined by T = 2π/ω, (b) velocity norm and vectors
at t = 0, T/6, 2T/6, T/2, in (x, y = 0, z) slice plane.

Table 2. 3D axisymmetrical parabolic bowl: L2 error table and convergence rate for the
velocity and the water depth for each mesh.

Nd.o.f.
First order scheme Second order scheme

L2 errorh Rate L2 error u Rate L2 errorh Rate L2 error u Rate

1273 0.0215 – 0.0175 – 3.19 10−4 – 0.41 10−3 –
66624 0.0065 1.05 0.0051 1.05 0.26 10−4 2.01 0.35 10−4 2.07
456615 0.0052 0.75 0.0039 0.71 0.95 10−5 2.79 1.30 10−5 2.89
1784190 0.0040 0.81 0.0029 0.80 0.67 10−5 1.20 0.90 10−5 1.15
4906850 0.0030 0.87 0.0021 0.86 0.43 10−5 1.37 0.58 10−5 1.40

6.2.2. Draining of a tank

Considering the Navier–Stokes system (2.1)–(2.3) completed with the boundary conditions (2.5)–(2.8), the
following proposition holds, see [28] for more details about the proposed analytical solution.

Proposition 6.4. For some t0 ∈ R, t1 ∈ R∗+, (α, β) ∈ R2
+ such that αβ > L, let us consider the functions

h, u, v, w, p, φ defined for t ≥ t0 by

h(t, x, y) = αf(t),

u(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2(θ) + y sin2(θ)),

v(t, x, y, z) = β
(

(z − zb)−
α

2
f(t)

)
+ f(t)(x cos2(θ) + y sin2(θ)),

w(t, x, y, z) = f(t)(zb − z),
p(t, x, y, z) = pa(t, x, y)− 2νf(t) + g(h− (z − zb)),

where f(t) = 1/(t− t0 + t1) and with a flat bottom zb(x, y) = zb,0 = cst and pa(t, x, y) = pa,1(t), with pa,1(t) a
given function.

Then h, u, v, w, p as defined previously satisfy the 3D hydrostatic Navier–Stokes system (2.1)–(2.3) completed
with the boundary conditions (2.6), (2.4), (2.7), (2.5) and κ = 2ναβ

h(t,x,y)[αβ−2(x cos2(θ)+y sin2(θ))]
in (2.6), W = νβ/2
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Figure 5. 3D axisymmetrical parabolic bowl: error between the analytical water depth (a),
the analytical horizontal velocity (b) and the simulated ones with the five unstructured meshes.
The curves for the first order scheme (space and time) and its second order extension (space
and time) are compared to the first and second order theoretical curves (dashed lines).

with ts = 1√
2
(1, 1, 0)t in (2.7). The appropriate boundary conditions for x ∈ {−L/2, L/2} or y ∈ {−L/2, L/2}

are also determined by the expressions of h, v, u, w given above.
Choosing the viscosity ν = 0, the variables h, u, v, w, p become analytical solutions of the 3D hydrostatic Euler

system (2.12) and (2.13) completed with the boundary conditions (2.5), (2.4) and p(t, x, y, η(t, x, y)) = 0.

Proof of Proposition 6.4. The proof of Proposition 6.4 relies on very simple computations and is not detailed
here. �

We have performed the simulations for several unstructured meshes of the geometrical domain (x, y) ∈
[0, 5] × [0, 1] and an adapted number of layers so that each 3D element of the mesh can be approximatively
considered as a regular polyhedron, the considered meshes have 483 nodes and 3 layers, 700 nodes and 6 layers,
1306 nodes and 10 layers, 2781 nodes and 20 layers.

For L = 2 m, α = 1 m s, t0 = 0 s, t1 = 0.5 s, β = 2.5 s−1, θ = 0, ν = 0 m2 s−1, pa,1 = 0 m2 s−2 on Figure 6a,
we have depicted the features of the analytical solution – at time T = 0.5 s – we use for the convergence test.
Figure 6b gives the convergence curve towards the analytical solution i.e. the log(L2-error) of the water depth
– at time T = 1 s – versus log(ha0/ha) for the first and second-order schemes and they are compared to the
theoretical order (we denote by ha the average edge length and ha0 the average edge length of the coarser mesh).
Notice that in this test case, the errors due to the space and time discretization are combined, this explains
why the theoretical orders of convergence are not exactly obtained. Moreover, the boundary conditions (inflow
prescribed) play an important role and since their numerical treatment is only at the first order in space, this
also explains the difference between the theoretical and observed orders of convergence. With the mesh having
2781 nodes, we have tested the influence of the number of layers, see Figure 6c. When the numbers of layers
increase, we recover the analytical velocity profile.

6.3. Simulation of a tsunami

In this section, we test our discrete model in the case of a real tsunami propagation for which field mea-
surements are available (free surface variations recorded by buoys). Even if in such cases, involving long wave
propagation, 2D shallow water models can be used instead of 3D description, and we test here the capacity of
our model and of the numerical procedure to handle this complex situation.
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Figure 6. Analytical solution given in Proposition 6.4: (a) slice of the fluid domain for y =
0.5 m and velocity field at time T = 0.5 s, (b) convergence curve towards the reference solution,
first order (space and time) and second order extension (space and time) schemes. The first
and second order theoretical curves correspond to the dashed lines. (c) Analytical horizontal
velocity u along z at abscissa x = L/2 m and time T and its simulated values for different
numbers of layers.

Figure 7. Left: location of the zone of interest, located offshore Northern Chile; Center: bathy-
metric map showing the earthquake epicenter (red cone) and the location of the three DART
buoys (black boxes); Right: vertical displacement (in centimeter) of the topography due to
the earthquake. Horizontal displacements (not shown here) are also taken into account in the
simulation.

Simulation of tsunami waves generated by earthquakes is very important in Earth science for hazard assess-
ment and for recovering earthquakes characteristics. Indeed, tsunami waves can be analyzed to recover the
earthquake source that generated the tsunami and are now classically used in joint inversion methods. It has
been shown that tsunami waves provide strong constraints on the spatial distribution of the source, especially
in the case of shallow slip [38]. In some cases, far-field tsunami gauges may help constrain the earthquake source
process even though they are affected by the compressibility of the water column and of the Earth [38,54].

The 2014/04/01 Iquique earthquake struck off the coast of Chile at 20:46 local time (23:46 UTC), with a
moment magnitude of 8.1. The epicenter of the earthquake was approximately 95 kilometers (59 mi) northwest
of Iquique, as shown in Figure 7.

We have carried out simulations of the tsunami induced by the earthquake using

– a topography obtained from the National Oceanic and Atmospheric Administration (NOAA, [13]) using the
ETOPO1 data (1 arcmin global relief model),
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Figure 8. (a)–(c): Comparison between the sea level variations recorded by the 3 DART
buoys and the corresponding simulations (1st and 2nd order schemes). (d) Effect of the mesh
size on the simulation accuracy for DART buoy 32401. In (a), (b), (c), (d), observations have
been detided using a low pass Butterworth filter (order 4 and cutoff frequency of 4 h), and the
simulated waveforms have been filtered with the same Butterworth filter.

– an unstructured mesh whose dimensions – a square of 2224.2 km2 – correspond to the domain covered by
Figure 7,

– a source corresponding to the seafloor displacement induced by the earthquake (Fig. 7). This source is
obtained by computing the 3D final displacements of the seafloor generated by the earthquake coseismic slip.
This coseismic slip has been itself retrieved by inversion of numerous geodetic and seismic data, according
to the model determined by Vallée et al. [51]. The source is activated at time t0, just after the earthquake
occurrence (t0 is here 2014/04/01, 23h47mn25s)

We did not consider here the Coriolis force, the tides and the ocean currents. The results shown in Figure 8 have
been obtained with a mesh containing 545 821 nodes and 5 layers (computation time was 35 min with a Mac
book air 1.7 GHz Intel core i7). We compare the numerical solutions – provided by the first order scheme (space
and time) and the second order scheme (space and time) – with the DART measurements (obtained from
the NOAA website http://www.ndbc.noaa.gov/dart.shtml). A series of simulations have been performed
using several meshes and we present “converged” results in the sense that a finer mesh would give the same
results. This is illustrated in Figure 8d, where we plot the simulation results obtained with three meshes having
respectively 311 687 nodes (coarse mesh), 545 821 nodes (fine mesh), and 985 327 nodes (very fine mesh): the
curves corresponding to the fine (cyan) and very fine (blue) curves are very similar.

http://www.ndbc.noaa.gov/dart.shtml
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Figure 9. (a) Bathymetry profile for the experimental setup, the three red cones represent the
location of the three gauges and (b) free surface elevation at time t = 16 s.

Figures 8a–8c shows that the second order scheme significantly improves the results both for the amplitude
and phase of the water waves. The second order scheme is able to very accurately reproduce the shape of the
first wave at the closest DART buoy 32 401, located at 287 km from the epicenter. The two following peaks
in the waveform are quite well reproduced up to about 1.755 × 105 s. This is also the case at the DART buoy
32 402, located 853 km from the epicenter. The arrival time of the first wave is very well reproduced at the three
DART buoys, slightly better with the second order scheme. At the most distant buoy 32 412 (1650 km from the
source), the first order scheme is not able to reproduce the recorded wave. The second order scheme reproduces
the first wave quite well but not the rest of the waveform, possibly due to Earth curvature effects that are not
taken into account here. Globally, the low frequency content of the signals is better explained by the model than
the high frequency fluctuations. These high frequency fluctuations may be related to effects not accounted for
here, such as spatio-temporal heterogeneity of the real source, small wavelength fluctuation of the topography,
and possibly non-hydrostatic effects [1, 29].

6.4. Monai valley benchmark

In 2004, as part of a workshop organized by the US National Science Foundation, an experiment has been
set up, reproducing the impact of a tsunami wave on the shore of the Okushiri island, in the Monai village
area. The objective of the experiment was to provide a set of well organized data, reproducing the 1993 tsunami
event, to validate numerical codes for Tsunami simulation [41,44].

This test case has been simulated by various numerical tools, it is well suited to test the numerical treatment
of wet/dry interfaces. We reproduce hereafter the results obtained with Freshkiss3D [2].

The geometrical domain of 5.448 m× 3.402 m is depicted over Figure 9 where the bathymetry and the free
surface elevation at time t = 16 s are presented. The topography, the input wave and the time series of surface
elevation at different gauges are available here [45]. For the three gauges located respectively at (x = 4.521,
y = 1.196), (x = 4.521, y = 1.696), and (x = 4.521, y = 2.196), we compare the simulation results and
the experimental data, see Figure 10. The unstructured mesh used has 8 layers and 35 000 nodes for the
horizontal mesh (corresponding to a mean edge length of 0.028 m), notice that it is significantly coarser than
the recommended grid sizes of ∆x = ∆y = 0.014 m. Since the test case corresponds to a shallow water flow,
the results we obtain are similar to those provided with the resolution of the classical Saint-Venant system, see
(Clawpack [33], Hysea [42], . . . ).

6.5. Hydrodynamics in a raceway

In this section, we test our model in the case of raceways used as High Rate Algal Ponds developed to produce
microalgae biomass [34] or treat wastewater as enhanced stabilization ponds.
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Figure 10. Comparison between the free surface variations recorded by the 3 gauges and the
corresponding simulations (2nd order schemes in space and time).

6.5.1. Experimental measurements

Raceways are annular shaped ponds where the water is mixed with a paddlewheel, see Figure 11a. In this
experiment, the raceway has a length of 4.2 m and a width of 1.2 m with perfect circular shape at each extremity.
The height of water is 0.5 m for a total volume of water circulated of 2.37 m3, see Figure 11b. The paddlewheel
has a diameter of 1.36 m and a width of 0.5 m with 6 blades equally distributed. Based on plastic material, blades
are reinforced by two circular plates at each side with holes in between each blade in order to avoid air trapping.
The paddlewheel was placed at the beginning of the straight part of the raceway (rotating axe at 0.66 m after
the end of the curve) and a depth of 0.2 m leaving 0.3 m between the downiest part of the paddlewheel and the
bottom of the raceway. The rotation frequency of the paddlewheel is maintained in order to obtain a speed at
the circumference of 0.6 m s−1.

In order to measure the water velocities at different localized points of the pond, a correlation wedge flow
sensor from NIVUS (model POA-V2XXK) was used. It measures continuously the speed in a window of 5◦

(inclination of the measure is 40◦) of 16 layers from the bottom until a maximum height of 1 m. The accuracy
alleged by the supplier is 0.5% for speed between 0.05 to 0.5 m s−1 and 1% over (max 6 m s−1). Hence, for the
points Ain, Aout, Bin, Bout, Cin, Cmid, Cout, Pin, Pout, Qin, Qout, Rin and Rout depicted over Figure 11b and
having, in the plane (O, x, y), the coordinates (given in meter)

• Ain : (0.75, 0.11), Aout : (0.5, 0.51)
• Bin : (1.75, 0.11), Bout : (1.5, 0.51)
• Cin : (2.75, 0.11), Cmid : (2.5, 0.31), Cout : (2.5, 0.51)
• Pin : (2.75,−0.11), Pout : (2.5,−0.51)
• Qin : (1.75,−0.11), Qout : (1.5,−0.51)
• Rin : (0.75,−0.11), Rout : (0.5,−0.51)

we can measure the horizontal velocities at several elevations from the bottom to the free surface.
Such experimental measurements allow to describe finely the hydrodynamic regime within the raceway. The

measured average horizontal velocity is 0.21 m s−1. A gradient of velocity can be observed from the bottom to
the top of water as well as from the inner to the outer border. A dead zone is observed at 2.5 m close to the
outer border (Bout). Profile is much more linear in the second straight part (return) with an acceleration of
water close to the outer border (Pout) and a deceleration in the inner border with a dead zone after the curve
close to the inner border (Pin). Finally, an ascendant flow is observed at the beginning of the second straight
part (Pout) with high speed coming from the bottom to the top of the profile along the outer border (Qout).
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Figure 11. (a) A typical raceway for cultivating microalgae, notice the paddlewheel which
mixes the culture suspension, picture from INRA (ANR Symbiose project) and (b) geometry
of the experimental raceway, location of the paddlewheel and position of the sensors.

Figure 12. The raceway with the simulated velocity field u (upper view).

6.5.2. Simulation results

The simulation has been carried out with a mesh having 3330 nodes and 25 layers. Starting from a raceway at
rest, after 50 s a stationary regime is reached – especially far from the paddlewheel. The viscosity of the fluid is
ν = 0.005 m2 s−1 and the bottom friction κ = 0.002 m2 s−1. The paddlewheel and its modeling in the multilayer
framework is described in [14] and not presented here.

A global view of the hydrodynamics in the raceway at time T = 50 s is given over Figure 12 and the
comparisons between the simulation results and the experimental measurements are given over Figure 13.
Figure 13 enables to formulate three main comments

– the velocity field in the raceway is really 3D in the sense that two closed points can have very different
velocity fields, see e.g. points Aout and Ain or Pout and Pin.

– The results are in good agreement with the measurements.
– At some points of the raceway (Ain near the paddlewheel or Cout near the turn), the non-hydrostatic effects

can be significant and this can explain the discrepancy between the simulations and the measurements.
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Figure 13. (a) Comparison between the experimental velocities and the simulated ones for
the thirteen points defined over Figure 11b.

7. Conclusion

In this paper, we have presented a layer-averaged version of the 3D incompressible, hydrostatic Euler and
Navier–Stokes systems with free surface. Compared to previous works of some of the authors, the numerical
scheme is improved (implicit treatment of the vertical exchanges, description of the topography source term,
. . . ) and hence, based on a kinetic interpretation of the system for the Euler part, we have derived a stable,
robust and efficient numerical scheme in a finite volume/finite element framework on fixed unstructured meshes.
The numerical scheme is endowed with strong stability properties (domain invariant, well-balancing, wet/dry
interfaces treatment, . . . ).

The numerical scheme is successfully validated with analytical solutions and is shown to be applicable to simu-
late complex test cases, like a tsunami propagation over a real bathymetry, proving its accuracy and efficiency.

Appendix A.

Proof of Proposition 3.5. Using the results of Proposition 3.1, it remains to obtain the expression for the layer-
averaged viscous terms.

The layer-averaging of the viscous terms appearing in (2.2) gives∫ zα+1/2

zα+1/2

(
∂Σxx
∂x

+
∂Σxy
∂y

+ ν
∂2u

∂z2

)
dz =

∂

∂x
(hαΣxx,α) +

∂

∂y
(hαΣxy,α)

+ ν
∂u

∂z

∣∣∣∣
α+1/2

− ν ∂u
∂z

∣∣∣∣
α−1/2

−
∂zα+1/2

∂x
Σxx,α+1/2 −

∂zα+1/2

∂y
Σxy,α+1/2

+
∂zα−1/2

∂x
Σxx,α−1/2 +

∂zα−1/2

∂y
Σxy,α−1/2, (A.1)
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with
hαΣxx,α =

∫ zα−1/2

zα−1/2

Σxxdz.

The boundary conditions at the bottom (2.6) and at the free surface (2.7) imply that in (A.1)

ν
∂u

∂z

∣∣∣∣
N+1/2

− ∂η

∂x
Σxx,N+1/2 −

∂η

∂y
Σxy,N+1/2 = 0,

and

ν
∂u

∂z

∣∣∣∣
1/2

− ∂zb
∂x

Σxx,1/2 −
∂zb
∂y

Σxy,1/2 = κu1.

The above expression for Σxx,α and relation (A.1) have been obtained using the following formal computation∫ zα+1/2

zα+1/2

∂Σxx
∂x

dz =
∂

∂x

∫ zα+1/2

zα+1/2

Σxxdz −
∂zα+1/2

∂x
Σxx,α+1/2 +

∂zα−1/2

∂x
Σxx,α−1/2

=
∂

∂x
(hαΣxx,α)−

∂zα+1/2

∂x
Σxx,α+1/2 +

∂zα−1/2

∂x
Σxx,α−1/2.

The definitions (3.19) and (3.20) are motivated by the following computation

hα+1 + hα
2

Σxx,α+1/2 = να+1/2

∫ zα+1

zα

∂u

∂x
dz

= να+1/2
∂

∂x

∫ zα+1

zα
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∂x
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∂zα
∂x

uα
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∂

∂x

(
hα
2
uα +

hα+1

2
uα+1

)
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∂zα+1

∂x
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∂zα
∂x

uα
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(
hα
2
∂uα
∂x

+
hα+1

2
∂uα+1

∂x

)
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∂zα+1/2

∂x
(uα+1 − uα).

In order to prove the energy balance (3.23) we use the results of Proposition 3.2 obtained for the layer-averaged
Euler system and it remains to consider the viscous and frictions terms multiplied by uα.

Let us define Rα

Rα =
(
Rx,α
Ry,α

)
= ∇x,y. (hαΣα)− Σα+1/2∇x,yzα+1/2 + Σα−1/2∇x,yzα−1/2
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hα + hα−1
− καuα.

We write
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and using the closure relation (3.21), it comes for α = 2, . . ., N − 1

Rx,αuα =
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α.

An analogous relation can be easily obtained for Ry,αvα and computing the sum over the layers of the
obtained quantity, we get

N∑
α=1

Rα.uα =
N∑
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(
∂ (uαhαΣxx,α)
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+
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proving the result. �

Appendix B.

Simple computations give

Fh = h

∫
{y1≥− ũc }×R

(ũ+ cy1)χ0(y1, y2)dy1dy2

= h

∫ +∞

y1=− ũc
(ũ+ cy1)
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)
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h

π

∫ +∞
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(ũ+ cy1)

√
1− y2

1

4
dy1, (B.1)

Fhu = h

∫
{y1≥− ũc }×R

(ũ+ cy1)(u+ cnxy1)χ0(y1, y2)dy1dy2

=
h

π

∫ +∞
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√
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1

4
dy1,

and likewise for Fhv we have

Fhv =
h

π

∫ +∞

y1=− ũc
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√
1− y2

1

4
dy1.

It is possible to obtain explicit formula for the expressions of Fh, Fhu and Fhv since defining

I1(z) =
∫ z

(u+ cz)

√
1− z2

4
dz, I2(z) =

∫ z

(u+ cz)(v + cnz)

√
1− z2

4
dz,
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we have

I1(z) = −4c
3

(
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)3/2

+ u

(
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4
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,
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Therefore, it comes

Fh =


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.
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[36] E.D. Fernández-Nieto, E.H. Koné and T. Chacón Rebollo, A multilayer method for the hydrostatic Navier–Stokes equations:
a particular weak solution. J. Sci. Comput. 60 (2014) 408–437.

[37] E. Grenier, On the derivation of homogeneous hydrostatic equations. ESAIM: M2AN 33 (1999) 0965–970.

[38] A. Gusman, S. Murotani, K. Satake, M. Heidarzadeh, E. Gunawan, S. Watada and B. Schurr, Fault slip distribution of the
2014 iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophys. Res. Lett. 42 (2015)
1053–1060.

[39] J.-M. Hervouet, Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method. Wiley (2007).

[40] P.-L. Lions, Mathematical Topics in Fluid Mechanics. In: Vol. 1 of Incompressible Models. Oxford University Press, Oxford
(1996).

[41] P.L.-F. Liu, H. Yeh and C. Synolakis, Advanced Numerical Models for Simulating Tsunami Waves and Runup. World Scientific
Publishing Company 10 (2008).
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