
1.  Introduction
Earthquake source solutions are important in many fields of seismology, such as, but not limited to, seismic 
hazard, earthquake physics, seismotectonics, and seismic tomography. Although source inversion is an estab-
lished discipline in seismology, obtaining a robust solution of moment tensor components together with a spatial 
and temporal location is still a challenging task. A largely unexplored potential lies in the adoption of more 
realistic Green's functions, which until recently have only accounted for radially symmetric Earth structure. In 
the wake of increasing computational power and growing number of full-waveform tomographic models, use of 
numerically computed Green's functions for complex regional Earth models has become possible.

Abstract  We present probabilistic centroid-moment tensor solutions inferred from the combination of 
Hamiltonian Monte Carlo sampling and a 3-D full-waveform inversion Earth model of the Japanese islands. 
While the former provides complete posterior probability densities, the latter allows us to exploit waveform 
data with periods as low as 15 s. For the computation of Green's functions, we employ spectral-element 
simulations through the radially anisotropic and visco-elastic model, leading to substantial improvements of 
data fit compared to layered models. Focusing on 13 Mw 4.8–Mw 5.3 offshore earthquakes with a significant 
non-double-couple (non-DC) component, we simultaneously infer the centroid location, time and moment 
tensor without any a priori constraints on the faulting mechanism. Furthermore, we perform the inversions 
across several period bands, varying the minimum period between 15 and 50 s. Accounting for 3-D Earth 
structure at shorter periods can increase the double-couple (DC) component of an event, compared to the 
GCMT solution, by tens of percent. This suggests that non-DC events in the GCMT catalog may result from 
unmodeled Earth structure and the related limitation to longer-period data. We also observe that significant 
changes in source parameters, and the DC component in particular, may be related to only small waveform 
changes, thereby accentuating the importance of a reliable Earth model. Posterior probability density 
distributions become increasingly multimodal for shorter-period data that provide tighter constraints on source 
parameters. This implies, in our specific case, that stochastic approaches to the source inversion problem are 
required for periods below ∼20 s to avoid trapping in local minima.

Plain Language Summary  In the majority of global earthquake catalogs, the earthquake 
solution, that is, centroid location, time and a rupture mechanism, is typically inferred assuming a 1-D Earth 
model. However, both earthquake source and Earth structure contribute to seismic recordings, meaning that 
unaccounted structure might map into and pollute the source solution. In this study we use a 3-D Earth structure 
of the Japanese islands to model the waveforms and infer earthquake parameters of 13 small-to-moderate 
magnitude offshore events. We do not put any a priori constraints on the faulting mechanism and let it 
be determined by the data. We perform stochastic inversions, which provide us with a collection of all 
plausible  models ranked by their respective probability. When a 3-D Earth structure at shorter periods is taken 
into account, the earthquake mechanisms, investigated in this study, can be largely explained by a slip on the 
fault. We also observe that significant changes in source parameters may be related to tiny waveform changes, 
thereby accentuating the importance of a reliable Earth model.
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1.1.  Recent Developments in Source Inversion

Earthquake source mechanisms, in terms of the first-motion polarities and fault-plane solutions, have been 
studied since the beginning of the 20th century (Byerly,  1928; Galitzin,  1909; Omori,  1905), and the first 
computer programs, intended to aid the graphical analysis, were developed in the early 1960s (Kasahara, 1963; 
Knopoff, 1961). A significant development was accomplished by Backus and Mulcahy  (1976a, 1976b), who 
derived a phenomenological representation for an indigenous source and showed that each seismic source can be 
described by a moment tensor, or a distribution thereof. Seismic source inversion has become routine since the 
end of the last century (e.g., Dziewoński et al., 1981; Kanamori & Given, 1981; Mendiguren, 1977). Since then, 
different approaches have been established to retrieve information on the source parameters, based on, for exam-
ple, first-motion polarity (e.g., Hara et al., 2019; Kasahara, 1963; Knopoff, 1961; Lentas, 2017), body waveforms 
(e.g., Dreger & Helmberger, 1991; Dziewoński et al., 1981; Vallée et al., 2011), surface waves (e.g., Ferreira 
& Woodhouse, 2006; Kanamori & Given, 1981; Romanowicz, 1982), with a specific interest to the ultra-long-
period W-phase (e.g., Duputel et al., 2012; Hayes et al., 2009; Kanamori & Rivera, 2008), or full waveforms, 
incorporating both body and surface wave signals (e.g., Dreger, 2003; Ekström et al., 2012; Hallo et al., 2017; 
Scognamiglio et al., 2016). While some methods might be more robust than others, all of them, to some degree, 
rely on how well one can predict the data for a given set of model parameters. The choice of the Earth model, 
hence, is of fundamental importance in earthquake source inversion, as unaccounted Earth structure might map 
into the source solution and potentially pollute it (e.g., Hjörleifsdóttir & Ekström, 2010; Smith & Ekström, 1996; 
Thurber, 1983; Woodhouse, 1983).

Until recently, radially symmetric Earth models have been predominantly used in source inversion studies, for they 
allow one to efficiently compute Green's functions. Lateral heterogeneities are then taken into account via empir-
ical or theoretical corrections (Ferreira et al., 2011). For example, traces or even the different portions of Green's 
functions can be shifted independently to fit the data (e.g., Ford et al., 2009a, 2009b; Zhao & Helmberger, 1994; 
Zhu & Helmberger, 1996). However, such corrections might mask earthquake source effects. Theoretical surface 
wave corrections may be implemented in terms of mean phase slowness along the source-receiver great circle 
(e.g., Pondrelli et al., 2002; Woodhouse & Dziewoński, 1984), neglecting the amplitude effects. In addition, great 
circle approximations, relying on ray theory, do not account for finite-frequency effects of wave propagation, 
hence the corrections themselves might be erroneous. Another approach is to use multiple 1-D Earth models to 
account for differences in oceanic and continental crust (Lee et al., 2011), as is done for the National Research 
Institute for Earth Science and Disaster Prevention (NIED) earthquake catalog in Japan (Kubo et  al.,  2002). 
Alternatively, the dependence on structural models can be alleviated, focusing on those data which are less sensi-
tive to crustal heterogeneities, such as the W-phase (Kanamori & Rivera, 2008) or the Pnl phase (Helmberger & 
Enge, 1980).

With increasing computational power, improving numerical methods (e.g., Afanasiev et al., 2018; Gokhberg & 
Fichtner, 2016; Komatitsch et al., 2010; Krischer et al., 2015; Nissen-Meyer et al., 2007; Wu et al., 2018) and theo-
retical developments (e.g., Fichtner, van Herwaarden et al., 2018; Thrastarson et al., 2020; Tromp et al., 2005; van 
Herwaarden et al., 2020), full-waveform tomographic models have been proliferating on both regional (e.g., Blom 
et al., 2020; Fichtner et al., 2009a; Krischer et al., 2018) and global scale (e.g., Bozdağ et al., 2016; Fichtner, van 
Herwaarden et al., 2018; French & Romanowicz, 2014). This has in turn enabled researches to start using numer-
ically computed 3-D Green's functions for source inversion. Such type of studies have been performed for the 
Southern California region (Graves & Wald, 2001; Jia et al., 2020; Lee et al., 2011; Liu et al., 2004; X. Wang & 
Zhan, 2019, 2020; Zhao et al., 2006), the Australian region (Hejrani et al., 2017; Hingee et al., 2011), the Sichuan 
province in China (Zhu & Zhou, 2016) and more recently for offshore earthquakes along the Nankai trough in 
Japan (Takemura et al., 2018, 2020). Several studies have investigated the effect of the 3-D Green's functions on 
source resolvability using synthetic and observed data (e.g., Donner et al., 2020; Graves & Wald, 2001).

The non-linear relationship between data and model parameters, such as centroid location and centroid time of 
an earthquake, make it difficult to tackle the source inversion with deterministic approaches. The least-squares 
method, for example, provides a single solution and does not account for non-uniqueness, which can arise due 
to insufficient data coverage and modeling inaccuracies. Furthermore, uncertainty information, derived by line-
arization methods, is only representative if the objective functional is indeed quadratic or otherwise have little 
meaning at all (Sambridge & Mosegaard, 2002). To tackle these challenges, we resort to probabilistic inference, 
which provides a collection of all plausible models ranked by their respective probability. Statistical inferences 
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can be made from the ensemble to assess the uncertainty, and covariance matrices can be recovered to study the 
inter-parameter trade-offs. Such an approach respects the non-uniqueness, avoids the subjective regularization 
required by the deterministic inversion, and delivers uncertainty measures as part of the solution. However, a 
more vigorous exploration of the model space typically comes with higher computational costs.

Stochastic approaches were used in the inversions of microseismic events (e.g., Pugh et  al.,  2016; Shang & 
Tkalčić,  2020), of events with anomalously high non-double-couple (non-DC) component (e.g., Mustać & 
Tkalčić,  2016), finite-fault inversions (e.g., Dettmer et  al.,  2014; Duputel et  al.,  2014; Minson et  al.,  2014), 
and for earthquake early warning purposes (Cua & Heaton, 2007). Only a few probabilistic studies have been 
performed using fully heterogeneous Earth models (e.g., Lee et al., 2011).

1.2.  Hamiltonian Monte Carlo

The performance of traditional stochastic random walk methods, such as Metropolis-Hastings (Hastings, 1970; 
Metropolis et al., 1953), tends to scale poorly with increasing dimension (Betancourt, 2017). One way to guar-
antee the efficacy of sampling is through informed proposals, a strategy to ensure that the transitions largely 
follow the contours of high-probability mass (Betancourt, 2017; Neal, 1996, 2011). Informed algorithms, such as 
Hamil tonian Monte Carlo (HMC) are designed to make use of the information outside of a simple target distribu-
tion evaluation at a given point (e.g., Khoshkholgh et al., 2020; Zanella, 2020). HMC relies on the gradient infor-
mation of the misfit in order to guide the sampler toward the areas of high-probability mass. It can be regarded 
as a hybrid approach encompassing the virtues of both gradient-based optimization and derivative-free Markov 
chain Monte Carlo methods (Fichtner, Zunino, & Gebraad, 2018).

HMC is particularly useful for multi-dimensional problems with high-quality data or weakly constrained priors, 
which, in traditional, derivative-free sampling algorithms would result in a low acceptance rate and a slow 
convergence. Although introduced in the 1980s (Duane et al., 1987), HMC has only recently gained popularity in 
geophysics. Maiti and Tiwari (2009) implemented HMC-based neural networks to analyze well log data, Muir and 
Tkalčić (2020) applied HMC for a lowermost mantle study, Sen and Biswas (2017) and Biswas and Sen (2017) 
used HMC in 1-D and 2-D seismic inversions, respectively, while Fichtner, Zunino, and Gebraad (2018) and 
Gebraad et al. (2020) further proved the potential of HMC for non-linear seismic tomography problems. Very 
recently Aleardi et al. (2020) used HMC in the context of dispersion curves inversion, while Koch et al. (2020) 
implemented adjoint HMC in the context of engineering. A variant of HMC that tunes itself while sampling was 
presented by Fichtner et al. (2021).

The potential of HMC in earthquake source inversion was demonstrated by Fichtner and Simutė (2018), where 
HMC was adapted for efficient source studies in complex media, with synthetic examples and a real-data illus-
tration. A study of induced earthquake parameters, which also takes advantage of linearized HMC, has been 
performed by Masfara et al. (2022). In this work, we largely rely on the methodology presented in Fichtner and 
Simutė (2018) and perform multiple source inversions with an expanded and improved data set.

1.3.  Motivation and Outline

Green's functions computed for laterally averaged structure are not adequate for tectonically complex areas, espe-
cially subduction zones, which require a proper incorporation of 3-D Earth structure (e.g., Engdahl et al., 1977; 
Igel et al., 2002). Simplified Earth models affect the estimation of the centroid location and time (e.g., Dziewoński 
& Woodhouse, 1983; Ferreira & Woodhouse, 2006; Hjörleifsdóttir & Ekström, 2010; Morales-Yáñez et al., 2020; 
Smith & Ekström, 1996; Thurber,  1983), the seismic moment (e.g., Patton & Randall,  2002), as well as the 
moment tensor itself (e.g., Ferreira & Woodhouse, 2006; Hejrani et al., 2017; Newrkla et al., 2019; Scognamiglio 
et al., 2016; Woodhouse, 1983), which often manifest as spurious non-double couple components (Zahradník 
et  al.,  2015). However, radially symmetric Earth models, which allow for a computationally efficient way to 
obtain Green's functions, are still commonly used in source inversion studies on the grounds that a suitable data 
selection might isolate data pertaining principally to the source (e.g., Ford et al., 2009a; Mustać & Tkalčić, 2016; 
Staehler & Sigloch, 2014; Woodhouse, 1983).

Motivated by the effects that unaccounted Earth structure potentially has on earthquake source solutions and 
endorsing the need for uncertainty information, we propose a stochastic earthquake source inversion, based on 
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the HMC sampling algorithm. We start by introducing a heterogeneous, viscoelastic and radially anisotropic 
Earth model of the crust and upper mantle beneath the Japanese islands region, which is constructed for this 
study (Section  2). We then introduce the formulation and practical aspects of forward and inverse problems 
(Sections 3–5). Finally, we present multi-period centroid moment tensor inversion results of earthquakes at the 
Izu-Bonin trench (Section 6). Owing to the Bayesian framework, we retrieve the uncertainty information as well 
as the inter-parameter trade-offs. We discuss the implications as well as the limitations of the study in Section 7 
and provide concluding remarks in Section 8.

This study should be viewed as a step toward establishing the methodology of source inversion with a 3-D Earth 
model and HMC framework. Having presented the basic concept in Fichtner and Simutė (2018), here we proceed 
with (a) applying the approach to several earthquakes in a realistic setup in Japan, (b) establishing technicalities 
of the algorithm, such as computation and storage of receiver-side Green's strains, and (c) studying the effect of 
3-D Earth model and HMC framework on a smaller number of source solutions. Hence, we admittedly handle 
several aspects, such as data and modeling errors or selection of measurement window, pragmatically. For a 
production code, some workflows could be automated and more consideration could be given to a more elaborate 
implementation of data errors.

2.  Velocity Model for the Japanese Islands
To reduce the effect of 3-D Earth structure on estimated source parameters, we construct a full-waveform inver-
sion model for the Japanese islands region, building on the velocity model previously constructed by Simutė 
et al. (2016) on the basis of waveform data in the 20–80 s period range. The model is viscoelastic, radially aniso-
tropic and 3-D heterogeneous. For forward and adjoint modeling, we employ the GPU-accelerated spectral-element 
wave equation solver SES3D (Fichtner et al., 2009b; Gokhberg & Fichtner, 2016). Earthquakes source parameters 
are obtained from the regional NIED earthquake catalog (Kubo et al., 2002). We use time-frequency phase misfits 
(Fichtner & Igel,  2008) to quantify differences between observed and synthetic waveforms within automati-
cally selected measurement time windows where waveform similarity is sufficient to avoid cycle skips (Krischer 
et al., 2015). The final model is the result of an iterative conjugate-gradient minimization of the misfit, with 
gradients computed by adjoint techniques (Fichtner et al., 2006; Tarantola, 1988; Tromp et al., 2005). We invert 
for isotropic P velocity vp, SV velocity vsv, SH velocity vsh, and density ρ. Furthermore, we implement viscoelastic 
attenuation by using the QL6 attenuation model of Durek and Ekström (1996), which is, however, kept constant 
throughout the inversion. Since the focus of this work is on source inversion, we refer to Simutė et al. (2016) for 
a more detailed and technical description of the well-established full-waveform inversion method.

Starting with the model presented in Simutė et al. (2016), we performed 14 additional iterations using waveform 
data with a slightly broadened period range of 15–80 s. First, we completed seven iterations for the larger model 
domain shown in Figure 1, which we also used previously (Simutė et al., 2016). Subsequently, we performed the 
remaining seven iterations for a smaller domain and with additional regional data, as indicated in Figure 1. This 
was intended to specifically improve that part of the model which we later use for the computation of Green's 
functions, needed for the Bayesian source inversion. With this concrete application in mind, we primarily focus 
on waveform fit, limiting the presentation of the structural model to a short paragraph at the end of this section.

The overall waveform misfit decreased by 24% after the first seven iterations in the larger initial domain, and by 
another 21% during the subsequent seven iterations in the smaller domain. More details on the misfit evolution 
are shown in the Figure S1 in Supporting Information S1.

In Figure 2, we present a small but representative collection of waveform comparisons across the model domain 
for four Mw 5.0–Mw 5.8 shallow- to intermediate-depth events, situated (a) at the Izu-Bonin trench, (b) off Kyushu, 
(c) in the Sea of Japan, and (d) off the east coast of Honshu. Together with the selected stations they represent 
model parts which are relatively well covered by the data. Still, the waveform fit is not uniform across the model 
domain. Observed waveforms for some paths, such as between event 19 and station BO.KSK, or event 30 and the 
stations in central Japan, are well explained in terms of both phase and amplitude. Other paths, in contrast, are 
characterized by a good match in phase but show discrepancies in amplitude; for example, the path between event 
16 and station BO.ABU. The latter is a general feature observed across the majority of the traces, suggesting that 
the source mechanism may need improvement.
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To assess the importance of using a 3-D model for source inversion in our study region, we compare computed 
waveforms for our 3-D model (red solid waveforms in Figure 2) and its laterally averaged 1-D version (red dashed 
waveforms in Figure 2). The 3-D full-waveform inversion model produces a substantially better waveform fit 
than the 1-D model, for which time shifts can be on the order of tens of seconds. For the whole-Earth 1-D model 
AK135 (Kennett et al., 1995) results are similar, thus corroborating that the lateral heterogeneities in our velocity 
model are indeed required to fit waveform data at periods between 15 and 80 s, as studied here.

In Figure 3 we compare the whole-seismogram waveform fit at short and long periods. The root-mean square 
error is computed as:

𝜒𝜒𝑖𝑖 =

√

∫
𝑇𝑇

0

[

𝑢𝑢0
𝑖𝑖
(𝑡𝑡) − 𝑢𝑢𝑖𝑖(𝑡𝑡)

]2
𝑑𝑑𝑑𝑑

√

∫
𝑇𝑇

0
𝑢𝑢0
𝑖𝑖
(𝑡𝑡)

2
𝑑𝑑𝑑𝑑

,� (1)

where 𝐴𝐴 𝐴𝐴0
𝑖𝑖
(𝑡𝑡) denotes the i-component of the observations, ui(t) the i-component of the synthetic seismograms, and 

T is the duration of the time series. Misfit at long-periods (50–80 s) is low throughout the domain, with remaining 
discrepancies close to the expected noise level. Misfits at short-period (15–80 s), on the other hand, have more 
variability, largely correlating with the geological complexity along the source-receiver path. The implications 
for the source inversion will be further discussed in Section 5.4.

A collection of depth and cross-sectional slices through the tomographic model in terms of deviation of the 
isotropic S velocity vs from the lateral average 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠 is shown in Figure  4. We compute isotropic S velocity as 

Figure 1.  Source-receiver setups for tomographic inversions in the initial large domain and the smaller focused domain. 
Within the large domain, we used 58 earthquakes, depicted as red and gray focal mechanisms, and all the stations except for 
the NE China array, shown as triangles. The smaller domain comprises 20 events from the original setup shown in red and 
four new events in orange together with all seismic stations depicted in non-gray color.
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𝐴𝐴 𝐴𝐴𝑠𝑠 =

√

2

3
𝑣𝑣2𝑠𝑠𝑠𝑠 +

1

3
𝑣𝑣2
𝑠𝑠𝑠

 (e.g., Babuška & Cara, 1991; Panning & Romanowicz, 2006). The lateral average 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠 (Figure 
S2 in Supporting Information S1), more depth slices (Figure S3 in Supporting Information S1), and depth profiles 
(Figure S4 in Supporting Information S1) as well as anisotropy (Figure S5 in Supporting Information S1), are 
presented as supplementary information.

Figure 2.  Representative collection of observed waveforms (black), synthetic waveforms computed for the final 3-D model (solid red) and synthetic waveforms 
computed for the 1-D laterally averaged model (dashed red). The waveforms are filtered between 15 and 80 s. We show the vertical component of the waveforms for 
four events and selected stations, with the source-receiver configuration specified in a separate map for each earthquake. Event information, shown in the top left corner 
of each map, are National Research Institute for Earth Science and Disaster Prevention Centroid-Moment-Tensor solutions (Fukuyama et al., 2001).
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Figure 3.  Root-mean square (RMS) misfit between the vertical component of the observed data and the synthetic 
seismograms calculated for the Global Centroid-Moment-Tensor solution for the Mw 5.2 event at 50 km depth depicted as a 
gray focal mechanism. The waveforms are filtered between 15 and 80 s (left) and 50–80 s (right). Misfits are normalized to 
the largest value of both scenarios. While longer-period data are well explained at the majority of the stations, more variation 
in misfit is present at shorter periods. Generally, stations in central Japan exhibit a very good fit, while those further away 
from the event, such as in Hokkaido or Kyushu, are characterized by slightly elevated misfits.

Figure 4.  Percentage perturbations of the isotropic S velocity, computed as 𝐴𝐴
𝑣𝑣𝑠𝑠 − 𝑣̄𝑣𝑠𝑠

𝑣̄𝑣𝑠𝑠
× 100 %, where 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠 is the lateral average of vs for each depth. (Top panels) Horizontal 

slices, with dashed gray lines representing plate boundaries. (Bottom panel) Vertical cross-sections. Red and yellow stars represent earthquakes since 1997 and 
earthquakes used in the tomographic study, respectively, within 1° of the slice. Red triangles represent Holocene volcanoes (Siebert et al., 2010).
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3.  Forward Problem
3.1.  Representation of the Displacement Field

In a point-source configuration the i-component of the displacement field u can be expressed as a convolution of 
a time-dependent moment tensor Mnq(t) and Green's strains Gin,q(x, t; ξ, τ) (Aki & Richards, 2002):

𝑢𝑢𝑖𝑖(𝒙𝒙, 𝑡𝑡) = 𝑀𝑀𝑛𝑛𝑛𝑛(𝑡𝑡) ∗ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙, 𝑡𝑡; 𝝃𝝃, 𝜏𝜏),� (2)

where Green's function Gin(x, t; ξ, τ) is the i-component of the displacement field recorded at location x and 
time t due to an impulse in n-direction at location ξ and time τ, and Gin,q(x, t; ξ, τ) is a spatial gradient of Green's 
function with respect to the q-coordinate of the source location, with, q denoting a derivative with respect to ξq. 
Einstein notation is implied.

In practice, it is often assumed that separate moment tensor components have the same time dependence, or the same 
source time function s(t) (e.g., Dziewoński et al., 1981; Ekström et al., 2012; Mustać & Tkalčić, 2016; Takemura 
et al., 2020; Zhu & Zhou, 2016), in which case a component of the displacement field can be expressed as:

𝑢𝑢𝑖𝑖(𝒙𝒙, 𝑡𝑡) = 𝑀𝑀𝑛𝑛𝑛𝑛 𝑠𝑠(𝑡𝑡) ∗ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙, 𝑡𝑡; 𝝃𝝃, 𝜏𝜏).� (3)

The source duration of ∼Mw 5 events, which we consider in this study, is usually a few seconds long (e.g., Vallée 
& Douet, 2016). Hence, we assume an instantaneous source time function, which is a sufficient approximation 
for the shortest periods we work with, that is, 15 s, which was also shown in the pilot study by Fichtner and 
Simutė (2018). Assuming the same source time function for all events and all moment tensor components, we can 
convolve s(t) with the Green's strains at the time of computation, in which case the displacement field becomes a 
linear combination of convolved Green's strains scaled by the moment tensor elements.

To ensure a rapid forward problem for probabilistic inference, we pre-compute and store the Green's strains in 
a database, taking advantage of spatial reciprocity. The merits of reciprocity for the computations of Green's 
functions have also been exploited in previous studies (e.g., Eisner & Clayton, 2001; Hejrani et al., 2017; Lee 
et al., 2011; Okamoto et al., 2018; Takemura et al., 2020; Zhao et al., 2006). The reciprocal formulation of Equa-
tion 3 can be found in Fichtner and Simutė (2018).

3.2.  Database of Green's Strains

We compute Green's strains numerically with the spectral-element solver SES3D (Fichtner et al., 2009b; Gokhberg 
& Fichtner, 2016). Enabled by reciprocity, we treat seismic stations as virtual sources and save the wavefield 
across the actual source area of interest, that is, the Izu-Bonin trench. To ensure a continuous representation 
of the wavefield within the domain, we store the wavefield on Gauss-Lobatto-Legendre (GLL) points of the 
fourth-order spectral-element method (SEM) grid and use the built-in polynomial interpolation of SEM to extract 
the wavefield for any spatial coordinate. This contrasts with the common practice of storing the Green's functions 
on a pre-defined grid (e.g., Hejrani et al., 2017; Lee et al., 2011; Takemura et al., 2020; Vackár et al., 2017), where 
one has to implement an interpolation routine or deal with a finite number of discrete locations and possibly limit 
the spatial resolution of the earthquake location. Storing the wavefield itself allows us to extract the strains for any 
potential source location and be exempt from any additional parametrization effects. We compute the database for 
over 50 selected F-net broadband stations (Figure 5) uniformly distributed across the network (National Research 
Institute for Earth Science and Disaster Resilience, 2021).

The source area of interest extends between 140°E and 143°E, 30°N–35°N, and down to 110 km depth. The 
downsampled wavefield with a time increment of 2 s takes 27 Gb of space for a single virtual source, and the 
total storage requirements are 4.2 Tb. The database is stored on Piz Daint supercomputer in the Swiss National 
Supercomputing Center, which we use to rapidly perform the inversions (Swiss National Supercomputing 
Center, 2021).
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4.  Earthquake Selection
4.1.  Moment Tensor Decomposition

Moment tensor decomposition is used for physical interpretation and classification of the seismic sources. Typi-
cally, a moment tensor is divided into isotropic (ISO) and deviatoric components. The latter can be further 
decomposed into a number of equivalent force combinations, such as double-couple (DC) and compensated 
linear vector dipole (CLVD) parts (Jost & Herrmann, 1989; Vavryčuk, 2015). In this study, we compute CLVD 
component of deviatoric events, that is, those from the GCMT catalog as 𝐴𝐴 2 ×

|𝑚𝑚3|

|𝑚𝑚1|
× 100 %, where m1,2,3 are the 

eigenvalues and |m1| > |m2| > |m3| (Dziewoński et al., 1981). The largest positive eigenvalue corresponds to the 
tension axis, the largest negative (in terms of the absolute value) to the compression axis, and the smallest abso-
lute eigenvalue, m3, to the null axis. A perfect CLVD event has a value of 100%, while a pure DC event 0%, as 
m3 = 0 for DC events (Dziewoński et al., 1981). The moment tensor decomposition of non-deviatoric events to 
ISO, DC and CLVD components is done after Vavryčuk (2015), which has been adopted in previous studies (e.g., 
Shang & Tkalčić, 2020; Vackár et al., 2017; Yu et al., 2019). We note that the deviatoric part of the moment tensor 
can be decomposed into a number of equivalent force combinations, and hence the choice is subjective (e.g., Jost 
& Herrmann, 1989).

4.2.  Earthquakes in the Area

The choice of the Izu-Bonin trench as a source area is primarily motivated by its high seismicity extending from 
the shallow crust and along the subduction interface, which gives us a range of earthquake mechanisms and 
depths to study. Mostly regional source-receiver distances allow for a safe point-source approximation, while the 
choice in general represents a realistic setup with imperfect station coverage.

The Izu-Bonin trench marks the boundary between the subducting Pacific plate and the Philippine Sea plate. The 
trench is situated nearly linearly from north to south. It is a steeply dipping subduction zone, with the angles of the 
Wadati-Benioff zone between 50° and 70° (Faccenna et al., 2018). Along the Izu-Bonin slab, seismicity extends 
from the shallow surface down to the transition zone in the south and ∼410 km depth in the north (Dziewoński 
et al., 1981; Ekström et al., 2012; Hayes, 2018; Hayes et al., 2012; Seno & Eguchi, 1983). Following the global 
trend, the majority of events are located in the upper ∼60 km (Hasegawa, 2011; Kong et al., 2018) (Figure 5). 

Figure 5.  (Left) Setup of the stations and the source area used in the source inversion. Receiver-side Green's strains were 
computed from each seismic station, acting as a virtual source, and stored within the shaded source area. The strain database 
extends from the surface to 110 km depth. (Right) Distribution of earthquakes within the horizontal extent of the source area 
as given in the Global Centroid-Moment-Tensor catalog between 1997 and 2020 (The Global CMT Project, 2021). The color 
of the circles corresponds to the depth of an earthquake, and the size to the absolute share of the compensated linear vector 
dipole (CLVD) component. Events used in this study are outlined in red. Depth scale saturates at a maximum depth.
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At this depth, seismicity primarily occurs as a low-angle interplate thrust faulting, reflecting the relative motion 
of the convergent plates (Hasegawa, 1990, 2011). Deeper down, earthquakes mostly take place within the slab 
(Hasegawa, 1990, 2011). In the Izu-Bonin arc—an old plate subduction zone—these intraslab events have the 
compressional axis predominantly oriented in the dip direction (Hasegawa, 2011). In the overriding plate, the 
compression is accommodated by intraplate thrust fault or strike-slip fault earthquakes, with compressional axis 
oriented in the direction of plate convergence (Hasegawa, 1990).

Given the complex nature of the subduction zone, earthquake mechanisms are diverse. Notably, there are numer-
ous strongly non-DC events, with CLVD component reaching up to 80% of the total moment (Figure 5). There 
are physical explanations for CLVD mechanisms, such as simultaneous faulting of two non-parallel planes (Kuge 
& Kawakatsu, 1993), or complex faulting with any deviation from unidirectionality in terms of a strike, dip or 
rake, with volcanic caldera collapse being a perfect example how many nearly simultaneous slips on a curved 
fault result in an effective vertical-CLVD earthquake (Fichtner & Tkalcic, 2010; Nettles & Ekström, 1998; Shuler 
et al., 2013). However, very often an apparent CLVD component is an artifact caused by a modeling error. Incor-
rect Earth structure, especially around the hypocenter of the earthquake, has a significant influence on moment 
tensor estimation (Burgos et al., 2016; Shuler et al., 2013). For an intuitive understanding, one can think in terms 
of a first-polarity inversion and a simple double-couple earthquake. The take-off angle depends on the velocity 
structure in which the earthquake is embedded. When the take-off angle is incorrect, the inferred pressure (P) 
and tension (T) axes, which correspond to the middle of dilatational and compressional quadrants, respectively, 
are also incorrect (e.g., Newrkla et al., 2019). The inconsistencies can go a long way, such that the mechanism 
can no longer be explained by a double-couple, and the errors in modeling are then compensated by introducing 
a CLVD component. Inability to clearly distinguish between the physical versus apparent CLVD component 
inhibits our understanding of earthquake physics, while possibly incorrect focal mechanisms hinders the accurate 
delineation of the local tectonic setting. Hence, by incorporating complex Earth structure in our study we expect 
to see whether the CLVD component is a physical feature of the earthquake or an artifact due to modeling errors.

4.3.  Study Events

We study events of moderate magnitudes, which fall within the area of our strain database (Figure 5) and have a 
significant CLVD component. Preference is given to more recent earthquakes away from the database bounda-
ries. We selected 13 events from the Global Centroid-Moment-Tensor (GCMT) catalog (Dziewoński et al., 1981; 
Ekström et al., 2012; The Global CMT Project, 2021). The earthquakes have moment magnitudes between Mw 
4.8–5.3, are distributed within 13 and 64 km depth with CLVD component ranging between 7% and 62% (in 
absolute sense), with a median value of 36% (Figures 5 and 6, Table S1 in Supporting Information S1).

5.  Inverse Problem
5.1.  Bayesian Inference

We work in the Bayesian framework, where according to Bayes' theorem (Bayes & Price, 1763) the posterior 
probability density π(q|d) of the model vector q given the data d is:

𝜋𝜋(𝒒𝒒|𝒅𝒅) = 𝑘𝑘𝑘𝑘(𝒅𝒅|𝒒𝒒)𝜋𝜋(𝒒𝒒).� (4)

Bayes' theorem provides a framework to enhance the existing knowledge, or the prior probability density π(q), with 
the new information from the data, that is, the likelihood π(d|q) (Fichtner, 2021; Mosegaard & Sambridge, 2002; 
Mosegaard & Tarantola,  2002; Sambridge & Gallagher,  2011). The likelihood term contains information on 
the data fit, that is, how well the current model can explain the data. A constant k ensures the integral of the 
posterior probability density over the model space is equal to one (e.g., Mustać & Tkalčić, 2016; Sambridge & 
Mosegaard, 2002; Staehler & Sigloch, 2014).

We express the likelihood π(d|q) as the exponential function of the negative L2 misfit between the synthetic and 
the observed waveforms, s and d, respectively:

𝜋𝜋(𝒅𝒅|𝒒𝒒) ∝ exp(−𝜒𝜒),� (5)

𝜒𝜒 =
1

2
(𝐬𝐬(𝐪𝐪) − 𝐝𝐝)

𝑇𝑇
𝑪𝑪𝑫𝑫

−1
(𝐬𝐬(𝐪𝐪) − 𝐝𝐝),� (6)

 21699356, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024231 by C
ochrane France, W

iley O
nline L

ibrary on [02/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

SIMUTĖ ET AL.

10.1029/2022JB024231

11 of 32

where CD denotes the data covariance matrix.

5.2.  Hamiltonian Monte Carlo

We pursue Bayesian inversion with the HMC method. Originally introduced as hybrid Monte Carlo (Duane 
et al., 1987), the method derives from molecular dynamics simulation, used to study the properties of many-body 
systems by solving Newton's equations of motion (e.g., Alder & Wainwright, 1959; Neal, 1993; Xu & Li, 2008). 
In short, HMC can be regarded as an efficient proposal mechanism, which relies on exploiting gradient informa-
tion of the model parameters. The main idea of the algorithm is to follow a contour of high probability, which is 
achieved by balancing the gradient, or the force, by an artificially introduced momentum.

To set the stage for HMC, we first expand our model parameter space, described by the Nq-dimensional posi-
tion vector q, with auxiliary momentum parameters p. For physical intuition of the sampling process one could 
imagine a mechanical particle in phase space. To propose a new sample, a particle is set into motion by randomly 
assigning momentum to each model parameter. The particle then travels along the trajectory for some artificial 
time τ. The end of the trajectory serves as a new proposal. By marginalizing over the artificially introduced 
momentum, we can retain only the position variables, that is, the physical part of the phase space, which we are 
actually interested in. Mathematically, the trajectory is governed by Hamiltonian dynamics:

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
,

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖
, 𝑖𝑖 = 1,… , 𝑁𝑁𝑞𝑞,� (7)

where potential energy U is expressed as:

𝑈𝑈 (𝒒𝒒) = −ln𝜋𝜋(𝒒𝒒|𝒅𝒅),� (8)

and kinetic energy must be defined by the implementation. In this study we use:

𝐾𝐾(𝒑𝒑) =
1

2
𝒑𝒑𝑇𝑇𝐌𝐌−1𝒑𝒑,� (9)

Figure 6.  Distribution of earthquakes selected for this study. Earthquakes are plotted in terms of their focal mechanisms, 
with colors representing the shortest acceptable inversion periods (see Section 5.4 for more details). Left: horizontal 
distribution of the events and their IDs plotted on the bathymetric map. (Right) Depth distribution of the study events. Deeper 
events can be modeled over a wider frequency range compared to the shallow ones.
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where the positive-definite mass matrix M is a tuning parameter, which, generally speaking, acts as a scaling 
parameter to ensure that momentum is tailored to the sensitivity of each model parameter. This, in turn, allows 
us to explore the space equally well for each parameter. The solution of Hamilton's equations throughout the 
artificial time τ represents the evolution of the model in phase space. The discretization of artificial time and the 
total length of the trajectory, L, are the tuning parameters of HMC. The dynamics conserve the total energy H 
throughout the Hamiltonian trajectory:

𝐻𝐻(𝒒𝒒,𝒑𝒑) = 𝑈𝑈 (𝒒𝒒) +𝐾𝐾(𝒑𝒑).� (10)

To solve the differential equations (Equation 7), we numerically integrate using a leapfrog algorithm, which 
preserves the volumes of regions of phase space, meaning, that by moving from one region in phase space 
to another, the points retain the same volume and reversibility in time, two properties important for HMC 
(Neal, 1993, 2011). The total energy, on the other hand, is not conserved by the leapfrog algorithm, and this 
affects the acceptance rate of the proposed samples.

The algorithm is performed in steps, starting with some model q:

1.	 �Draw momentum values from the multivariate normal distribution 𝐴𝐴 exp

(

−
1

2
𝒑𝒑𝑇𝑇𝐌𝐌−1𝒑𝒑

)

 .
2.	 �With q and p specified, solve Hamilton's equations (Equation 7).
3.	 �The end of the trajectory marks a newly proposed sample in terms of q(L) and p(L). After evaluating the total 

energy of the new sample, H, the model is accepted with probability:

Π𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = min

[

1,
exp[−𝐻𝐻(𝒑𝒑(𝐿𝐿), 𝒒𝒒(𝐿𝐿))]

exp[−𝐻𝐻(𝒑𝒑, 𝒒𝒒)]

]

.� (11)

4.	 ��Repeat the procedure from step (1). If the sample is accepted, use q(L) as a new starting point, otherwise, 
return to the beginning of the trajectory and reuse model q.

For technical aspects and choice of tuning parameters of HMC we refer the reader to Fichtner and Simutė (2018) 
and supplementary information (Text S3 in Supporting Information S1).

5.3.  Inversion Parameters

In this study we seek a centroid-moment tensor solution, which means we simultaneously infer a centroid loca-
tion, centroid time and a moment tensor of an earthquake (Dziewoński & Woodhouse, 1983). We invert for a 
full moment tensor, that is, six independent components Mij. By not imposing any constraints on the faulting 
mechanism, we allow the mechanism to be determined freely by the data. If a parameter, or a combination of 
parameters, cannot be constrained by the data, that is, it lies in the null space of the model space, this shall be seen 
in the uncertainties provided by the probabilistic inference. For the comparison purposes, we also run a separate 
inversion for each case imposing a zero-trace constraint on the moment tensor, which denotes a source without 
the isotropic component.

Working with the moment tensor components Mij is a subjective choice, and various alternatives exist (Tape & 
Tape, 2013). An advantage of the probabilistic approach used in this work is that the subjective component is 
explicit, and that it can be modified via a simple re-parameterization of the involved probability densities. Hence, 
if needed, results can easily be presented in any different parameterization, without suffering from subjective 
regularization bias.

We work with three-component displacement velocity waveforms, which are low- and highpass filtered with a 
zero-phase, three-corner filter from the ObsPy library (Beyreuther et al., 2010). For the misfit computation we 
select measurement windows from the full waveforms manually. We normalize the amplitudes of each window 
to the largest of the corresponding event and frequency band in order to preserve information carried by the body 
waves, which would otherwise be suppressed by the larger-amplitude surface waves. Our measurements include 
body waves and fundamental- and higher-mode surface waves. No arbitrary waveform shifting is required, as all 
relevant time shifts are taken care of by the previous full-waveform inversion.

Assuming uncorrelated Gaussian data noise, our data covariance matrix CD is a diagonal matrix, entries of which 
we conservatively estimate from the pre-signal noise. We express prior probability density on model parameters 
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as Gaussian distributions with standard deviations around 10 times larger than the parameter mean for the moment 
tensor elements (1 × 10 17 N m), and 2°, 20 km, and 2 s for horizontal location, depth, and centroid time, respec-
tively. As a prior mean we commonly use the solution provided by the GCMT (Dziewoński et al., 1981; Ekström 
et al., 2012). However, for some events (IDs 20050816, 20040407) we update the location first by running a 
preliminary inversion with a reduced number of samples, and then use the posterior maximum-likelihood model 
from this inversion as a prior mean for the main inversion. The choice of our prior is rather an attempt to encode 
ignorance than to represent actual prior information, which is not really available. Our goal is to ensure that 
the posterior distribution is primarily controlled by the data and not biased too much by the prior. We refer to 
the posterior maximum-likelihood model or maximum-likelihood model in short, as the one having the mini-
mum  potential energy U (Equation 8).

The choice of the parameterization and a corresponding prior is somewhat philosophical because it is inherently 
subjective. The only exceptions are when the prior is determined by fundamental physics, which is not the case 
here. In a simpler example, one may perform a seismic tomography in terms of velocity and a homogeneous prior 
in velocity, or with slowness and a homogeneous prior in slowness. Being Jeffreys parameters, one is inherently 
as good as the other. What is important, is that these choices are made explicit and that the results are interpreted 
while taking these choices into account.

5.4.  Multi-Period Band Inversion

Seismic waves traveling through complex geology for many wavelengths accumulate complicated path effects, 
such as frequency-dependent scattering or focusing in the presence of seismic velocity heterogeneities, which 
become more pronounced at shorter periods (e.g., Ferreira & Woodhouse, 2007; Igel & Gudmundsson, 1997; 
Igel et al., 2002). While our tomographic model can explain the majority of the waveforms in the 15–80 s period 
band, some complexities remain unaccounted for. This is primarily because strongly heterogeneous geology 
(e.g., accretionary prisms in the subduction zones) cannot be fully resolved by our limited data, especially due to 
non-uniform source-receiver distribution.

As expected, our model explains longer-period data better (Figure  3), but omitting shorter periods reduces 
the information content carried by the waveforms. Hence, we are faced with a trade-off between a very good 
long-wavelength Earth model and the available short-period information, which is necessary to constrain a full 
moment tensor, including its isotropic component.

In our approach we perform multi-period band inversions, which means that we invert the same event using 
different period data, that is, 15–80, 20–80, 30–80, and 50–80 s. We start with the short-period data inversions, 
that is, 15–80 s, and gradually expand the period band until an adequate waveform fit between the synthetic data 
for the maximum-likelihood model and the observed data is achieved. In the analysis we only consider those 
event—period-band configurations for which a plausible source model exists. This step is needed to account for 
uneven Earth model resolution. We determine whether the waveform fit between the observed and the synthetic 
data for the maximum-likelihood model is adequate using the L2 misfit (Equation 6) and visual evaluation. The 
L2 misfit is suitable for the inversion, where each event is considered separately, however, the absolute compar-
ison across events is problematic, because the misfit depends on the subjectively assigned data error, that is, the 
estimated data noise and its assumed distribution. Therefore, in addition to the L2 misfit, we also evaluate misfits 
visually.

At shorter inversion periods, the misfits across events vary more significantly than at longer periods (Figure 7). 
Waveforms of some events, which tend to be deeper, are explained better than those from other events, which tend 
to be shallower. This is illustrated in the right plot of Figure 7, where the waveforms for event 20150314 (GMCT 
depth 13.6  km) are not well explained at short periods, but the fit becomes adequate at long periods. Event 
20050816 (GMCT depth 51.1 km), on the other hand, has an adequate waveform fit throughout all the period 
bands. In our approach by varying the period, we seek an Earth model, which could largely explain the observed 
data and could therefore, be used for the source inversion.

In the following section we will investigate the results of three events inverted with 15–80, 30–80, and 50–80 s 
data and discuss the differences in solutions as seen by different period data. We will then group the events 
according to their shortest acceptable inversion period and provide a general overview of events from each period 
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band: three aforementioned events inverted with 15–80 s period data, one event with 20–80 s, three events with 
30–80 s, and six events inverted with 50–80 s period data.

6.  Inversion Results
6.1.  Multi-Period Band Inversions of Selected Events

We present three events, each inverted with 15–80, 30–80, and 50–80 s period data, and discuss how data content 
affects the inversion results. The comparison is only possible for a small collection of events, for which the 
minimum misfit in all frequency bands is acceptable. Results, in terms of the maximum-likelihood solutions, are 
presented in Table S2 in Supporting Information S1.

6.1.1.  Moment Tensor Solutions

We present ensembles of effective moment tensor solutions in Figure 8. While the inversion results from 30 to 
80 and 50 to 80 s period data are similar to each other, the short-period inversion (15–80 s) constrains a more 
distinctive source mechanism. Results from the short-period inversion reveal a significantly larger DC compo-
nent compared to the longer periods. Our 3-D Earth model enables us to use short-period data, which, in turn, 
minimizes, what appears to be, an apparent CLVD component. At long periods, despite the 3-D Earth model, the 
inherent trade-offs in the source parameters still persist, and an increase in DC component is smaller (Dufumier 
& Rivera, 1997; Fitch et al., 1981).

Using the laterally averaged 1-D model, as in Figure 2, only allows us to work in the 50–80 s period band because 
data fit is too poor at shorter periods. As a consequence, the available waveform information is insufficient to 
modify the prior significantly. The maximum-likelihood solution for the 1-D model is therefore close to the 
GCMT solution. This confirms that the quality of source inversions in densely instrumented regions is mostly 
limited by the quality of the Earth model and less by coverage. Though the comparison is made with respect to 
a 1-D Earth model, one-dimensionality is by itself unlikely to result in a small DC component. Instead, it is the 
resulting limitation to long period-data and the large null-space that it entails.

We note that using a 3-D Earth model and fixing the isotropic component to zero allows for a greater DC compo-
nent compared to the GCMT solution across all period band inversions, with the largest DC share typically 

Figure 7.  (Left) L2 misfit (Equation 6) between the observed and the synthetic data for the maximum-likelihood model from the inversion at each of the four period 
bands. Each line corresponds to an event and color to the shortest acceptable period band at which a plausible source model exists. Data are plotted on two subplots 
for clarity; note a scale difference. The misfits are computed for the vertical component and are normalized to the largest value for visualization. Misfits have a high 
variability at short periods (0.049–1), but converge to a similar value for long-period inversions (0.004–0.05), indicating that data are not equally well explained for 
events at short periods. (Right) Waveform fit for two selected earthquakes in different period bands. The acceptable inversion period band of event 20050816 (in blue) 
is 15–80 s. It has a good waveform fit at short, as well as long periods. The acceptable inversion period band of event 20150314 (in green) is 50–80 s. For all events, 
waveforms are better explained with increasing periods.
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reached at the shortest periods. Double-couple components in constrained inversions tends to be higher than in 
the corresponding unconstrained inversions.

6.1.2.  Event Locations

The ensembles of depth and horizontal location are presented in Figure 9. There is variability of centroid loca-
tions across different period bands. Similarly to the moment tensor solutions, the centroid locations from the 
short-period data inversions deviate more significantly from the longer-period ones as well as from the GCMT 
solution. We note that event relocations are accompanied by a change in the moment tensor.

The most significant difference between the short- and the long-period depth solutions is seen for event 20050816. 
Long-period data prefer locations near the GCMT solution, while the location mean from the short period inver-
sion (15–80 s) is around 9 km shallower and around 10 km northward than the corresponding mean from 50 to 
80 s data inversion.

6.1.3.  Posterior Probability Densities

Generally, shorter-period data put tighter constraints on the source parameters compared to the longer-period 
data. This is reflected in the variances of individual model parameters for 15–80 and 50–80 s period data inver-
sions (Figure 10 and Figure S8 in Supporting Information S1). Variances of the moment tensor components for 
short-period data inversion are 17% smaller than those at long period for event 20040407 and 35% for event 
20050816. The largest differences are for the diagonal elements (Mxx, Myy, Mzz) of the moment tensor, indicat-
ing that including short-period data improves the resolvability of the isotropic component. In the case of event 

Figure 8.  Ensembles of the focal mechanisms for three events inverted with 15–80, 30–80, and 50–80 s period data. Gray lines within the beachballs represent every 
100th accepted model and the colored mechanisms correspond to the maximum-likelihood model. Red beachballs represent unconstrained inversions, and the blue 
ones inversions where the isotropic component is fixed to zero. Gray beachballs at the top represent the Global Centroid-Moment-Tensor (GCMT) solution. The 
double-couple component of the constrained inversion exceeds that of the GCMT for all events in all period bands. Generally, the double-couple component reaches 
the highest value for the shortest-period data inversion and decreases with increasing period band. The bottom row with beachballs in pale colors shows solutions in the 
50–80 s period band based on Green's functions for the 1-D laterally averaged model, used before in Figure 2.
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20040407, location parameters have similar constraints from short- and long-period data inversions, while depth 
is much better constrained with short-period data for event 20050816 (Figure 10).

To demonstrate the inter-parameter trade-offs, we plot 2-D probability density marginals between the depth 
and all the other model parameters for 15–80 and 50–80 s period inversions (Figure 11). When shorter-period 
data are used, the posterior probability density distributions are more complicated (e.g., depth vs. Myz, Mxx) and 
appear multimodal. Because the multi-parameter distributions are not exactly Gaussian, maximum-likelihood 
models do not correspond to the mean values and might lie outside of the main probability density volumes 
(Figure 11).

Depth trades offs with the majority of the moment tensor components. For most of the parameters the corre-
lations are consistent for short- and long-period data inversions (e.g., depth vs. Mxx, Myy). However, a positive 
trade-off between depth and Mzz at short periods becomes a negative one at long periods. When compared across 
different events, we see that the trade-offs are not consistent, suggesting that it might be the earthquake mecha-

Figure 9.  Ensembles of the location for three study events inverted with data of three different period bands, 15–80, 30–80, 
and 50–80 s. Red and blue dots represent every 100th accepted model from the unconstrained and constrained inversions, 
respectively. The maximum-likelihood model from each inversion is represented as a beachball following the same color 
code. Gray beachballs correspond to the Global Centroid-Moment-Tensor (GCMT) solution. The model space around the 
GCMT location of event 20050816 has been explored at short-periods during the preliminary inversion, which was performed 
before the main one in order to update the event location used as a prior mean (Figure S6 in Supporting Information S1).
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nism or location responsible for such a variability. For event 20050816, for example, we see notorious trade-offs 
between depth and Myz and Mzz at long periods, which are successfully reduced when the inversion is performed 
with shorter-period data (Figure 12). More parameters for event 20050816 are shown in Figure S9 in Supporting 
Information S1.

Figure 10.  Comparison of marginal probability densities inferred with 15–80 and 50–80 s data for events 20040407 and 20050816. Marginal probability densities 
for moment tensor elements of event 20040407 are shown in the top two graphs, plotted on the same scale. Also shown are the standard deviation values for each 
parameter. Marginal probability densities for location parameters for events 20040407 and 20050816 are shown below. Generally, shorter-period inversion constrains 
the inversion parameters better. This is especially true for the diagonal elements (Mxx, Myy, Mzz) of the moment tensor.
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6.2.  Waveform Fit

In Figure 13, we present the waveform fit for two events inferred with 15–80 s period data. Compared to the 
GCMT solution, the fit improves by 4% for event 20050816% and 7% for event 20040407 for the unconstrained 
inversion. The maximum-likelihood solution from the constrained inversion usually gives slightly worse fit 
compared to the unconstrained one, the difference is 1% for the event 20040407 presented in the lower panel of 
Figure 13. Although the numeric waveform fit improvement is relatively small, its effect on the source mecha-
nism is significant. An improvement of 4% for event 20050816 means 21% increase in DC component (Figure 8) 
and a depth relocation of 7 km (Figure 9). Hence, large variations in source parameters are hidden in the subtle 
waveform differences, which are possible to extract only by virtue of a good Earth model. Waveform data for 
other events are available at the Zenodo repository (Simutė, 2022).

6.3.  Statistical Analysis

Here we present all events inverted in their shortest acceptable period band (see Section 5.4) and discuss those 
features of the results, which manifest across all the inversions. Results, in terms of the maximum-likelihood 
solutions, are presented in Table S3 in Supporting Information S1.

6.3.1.  Moment Tensor Type Across Different Inversions

The inversion results from short-period data (15–80 and 20–80 s) show a significant increase in the DC compo-
nent, when compared to the GCMT solutions (Figure 14). In the case of unconstrained inversion, DC component 
increases by up to 33% (event 20040407), with isotropic component not exceeding 12%. The source mechanisms 
from the constrained inversion have even stronger DC component. It increases by up to 48%, and reaches more 
than 85% for all but one earthquake.

Figure 11.  Comparison of selected trade-offs and marginal probability density functions for 15–80 s (top) and 50–80 s (bottom) period data inversion of event 
20040407. The limits for each parameter depend on the corresponding standard deviations, and are set from μ − 3σ to μ + 3σ, where μ is the mean and σ is the standard 
deviation of the distributions. When shorter-period data are used, the posteriors are more complicated (e.g., Myz, Mxx) and sometimes have several maxima. Because the 
multi-parameter distributions are not exactly Gaussian, maximum-likelihood models do not correspond to the mean values and for some parameters lie outside of the 
main probability densities. Depth trades off with the majority of the moment tensor components. For most of the parameters the trade-offs remain consistent for short- 
and long-period data inversions, however it is not always true (e.g., Myz and Mzz). Although for this particular event, trade-offs seem to be stronger when short-period 
data are used, it is not a general feature across other events.
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The results obtained with longer-period data (30–80 and 50–80 s) follow a different trend. Maximum-likelihood 
source mechanisms as well as locations stay similar to the GCMT values (Figure 15). In the case of 30–80 s inver-
sion, moment tensors from the unconstrained inversion show only a slight increase in DC component (2%–3%) 
with isotropic component not exceeding 2%. Source solutions inferred with 50–80 s period data (Figure 15) have 
negligible deviations from the GCMT solutions, both in terms of moment tensor and location. This means that 
inversions at long periods either have weaker constraints from the data and are dominated by the prior or that the 
likelihood term at longer periods favors the same solution as that given by the GCMT.

An overview of depth relocation across different inversions is presented in Figure  16. Similar to the source 
mechanisms, the largest deviations in depth come from the shortest-period band inversions. Events inferred with 
50–80 s period data maintain almost the same depth as given by the GCMT catalog.

6.3.2.  Principal Component Analysis

The value of probabilistic inversion lies in the statistical inferences which can be made from the ensembles of the 
accepted models. We can extract the moments, such as the mean value or the variance of the distribution, of the separate 
model parameters, and after marginalization easily visualize the 1-D probability density distributions (Figure 10). To 
study inter-parameter trade-offs, it is common to plot 2-D marginal probability densities (Figure 11). However, anything 
higher than two dimensions becomes difficult to visualize and to study. In order to better understand the posterior 
distribution of the multi-dimensional parameter space, we propose to perform a principal component analysis (PCA).

PCA works by introducing a new coordinate system of the model space, which emphasizes the variation in the 
distribution. Each new axis, called principal component (PC), is a linear combination of the physical model 
parameters. Depending on the type of observations or model parameters, PCA can be performed either on the 
covariance or on the correlation matrix.

The covariance matrix is defined as:

𝑐𝑐𝑐𝑐𝑐𝑐(𝑿𝑿) = 
[
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Figure 12.  Comparison of selected trade-offs for 15–80 s (top) and 50–80 s (bottom) period data inversions of event 
20050816. The limits for each parameter depend on the corresponding standard deviations and are set from μ − 3σ to μ + 3σ, 
where μ is the mean and σ is the standard deviation of the Gaussian-approximated distributions. For this event, the notorious 
trade-offs between depth and Myz and Mzz are reduced when the inversion is performed with shorter-period data.
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where X is the ensemble of sampled model parameter vectors. It is a K × N matrix, where K is the number of 
parameters, and N is the number of samples. The model mean vector μ is multiplied by an N × 1 vector of ones, 
and 𝐴𝐴  denotes the expected value of the product in the square brackets. Because our model parameters are incom-
mensurable, that is, they have diverse physical units, such as s or Nm, and variances with orders of magnitude 

Figure 13.  (Top) Waveform fit between the observed data (black), synthetic data for the maximum-likelihood model of 15–80 s period unconstrained inversion (solid 
red) and synthetics for the Global Centroid-Moment-Tensor (GCMT) solution (red dashed) for event 20050816. (Bottom) Waveform fit between the observed data 
(black), synthetic data for the maximum-likelihood model of 15–80 s period unconstrained inversion (solid red), synthetic data for the maximum-likelihood model from 
the constrained inversion (blue) and synthetics for the GCMT solution (gray dashed) for event 20040407.
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ranging from 1 × 10 −4 to 1 × 10 30, we work with a correlation matrix (Chave, 2017). The correlation matrix is 
characterized by the normalized covariances, but nevertheless, retains the inter-parameter trade-offs:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑿𝑿) =
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where 𝐴𝐴 𝐴𝐴𝑗𝑗𝑗𝑗 = 𝜎𝜎𝑗𝑗𝑗𝑗∕
√

𝜎𝜎𝑗𝑗𝑗𝑗𝜎𝜎𝑘𝑘𝑘𝑘 .

The first PC, or an eigenvector with the corresponding largest eigenvalue, is responsible for the largest variance 
of the distribution. In our case this corresponds to the greatest uncertainty axis. The best-constrained direction 
of the multi-dimensional distribution is represented by the smallest PC, indicating the narrowest extent of the 
distribution. The exact share of the explained variance is proportional to the size of the eigenvalue. If there are 
no dominant eigenvalues and all of them are of a comparable size, it means that all the PCs, or the effective 
parameters, are resolved with a similar (un)certainty. The correlation matrix is then close to being proportional to 

Figure 14.  Moment tensor ensembles inferred with 15–80 s (top three) and 20–80 s period data (bottom one). Gray beachballs correspond to the Global 
Centroid-Moment-Tensor (GCMT) solution, red beachballs correspond to an unconstrained inversion, and blue ones correspond to the inversion, where we assume 
no isotropic component. Gray lines represent every 100th model of the ensemble, with the maximum-likelihood models colored. On the right, we show the 
maximum-likelihood locations, following the same color code. The horizontal relocation from the GCMT solution amounts to several kilometers.

 21699356, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024231 by C
ochrane France, W

iley O
nline L

ibrary on [02/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

SIMUTĖ ET AL.

10.1029/2022JB024231

22 of 32

the identity matrix, resembling a multi-dimensional sphere (Chave, 2017). In a data set of observations, if some 
threshold variance, typically set between 70% and 90%, can be explained by much fewer PCs than a number of 
original parameters, one could retain only the most important PCs, and benefit from the reduced dimensionality 
of the problem (Chave, 2017).

Figure 15.  Moment tensor ensembles inferred with 30–80 s (top three) and 50–80 s period data (bottom three). Gray beachballs correspond to the Global 
Centroid-Moment-Tensor solution, red beachball correspond to an unconstrained inversion, and blue ones correspond to the inversion, where we assume no isotropic 
component. Gray lines represent every 100th model of the ensemble, with the maximum-likelihood models colored. On the right, we show the maximum-likelihood 
locations, following the same color code.
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We study PCs for the unconstrained inversion of each study event at its corre-
sponding shortest acceptable period band as presented in Section 6.3.1. The 
left column of Figure 17 illustrates the cumulative explained variance by the 
PCs for each event. We see that events inverted at longer periods (30–80, 
50–80 s) reach the 70% variance threshold with the first three and 90% with 
the first five PCs, while those inverted at shorter periods (15–80, 20–80 s) 
need four for 70% and seven for 90% variance threshold. In other words, the 
magnitudes of the PCs from long-period inversions extend over a greater 
range than those from the shorter-period inversions (right plot of Figure 17). 
From this we can deduce that the shape of multi-dimensional distribution 
for longer-period inversions diverge from the sphere more than for the 
short-period inversions. This means that for an event inverted at long periods, 
some axes (e.g., PC 0) are much more difficult to constrain than others (e.g., 
PC 9), while at shorter periods, they can all be constrained more equally.

In order to ascertain whether these certainty and uncertainty axes are simi-
lar across all the inversions, we investigate similarity of the PCs among the 
different events by computing the dot product between PCs associated (a) 
with uncertainty (PC 0–PC 4) and (b) certainty (PC 5–PC 9) within the same 
period band inversions. Putting a threshold of 30°, we find no consistency 
among the axes corresponding to either the smallest or the largest eigenval-
ues. In other words, PCs are pointing to different directions for each event 
and no linear combination of physical parameters can be generalized to be 
the least- or the best-constrained direction in the model space. This suggests 

that we cannot easily reduce the dimension of the problem by ignoring some parameters, because the eigenvectors 
are different for each event. Because the data and the azimuthal coverage are similar for all the study events, it is 
likely that the source mechanism or the centroid location are responsible for the fact, that each event is character-
ized by a very different set of PCs.

7.  Discussion
7.1.  Increase of Double-Couple Component

Accounting for heterogeneous Earth structure enables us to use shorter-period data (15–80, 20–80 s) in regional 
source inversion. This leads to a higher double-couple component compared to GCMT solutions, and it suggests 

Figure 16.  Comparison of earthquake depth in Global Centroid-Moment-
Tensor (GCMT) and unconstrained inversion of our study, color-coded by 
the period band of the inversion. Events inverted with the shorter-period data 
tend to deviate more from the GCMT solution that those inverted with longer 
periods.

Figure 17.  (Left) Cumulative explained variance with respect to the principal components (PCs) of the posterior correlation 
matrix of all study events within their acceptable period band. (Right) Distribution of eigenvalues, or PCs of the posterior 
correlation matrix.
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that at least part of the CLVD component, given by the GCMT catalog, is likely to be an artifact caused by 
forward modeling errors. This is supported by the comparison of posterior distributions for the 3-D full-waveform 
inversion model and its 1-D lateral average, shown in Figure 8. A similar trend of increasing DC component when 
3-D Earth structure is taken into account has been shown by Hejrani et al. (2017) and X. Wang and Zhan (2019) 
for earthquakes in the Papua New Guinea and Los Angeles regions, respectively.

7.2.  Power of Subtle Waveform Differences

Significant changes in the source parameters, both in terms of the moment tensor and the location, may occur 
despite relatively small waveform differences. In one of the examples we showed that an overall waveform fit 
improvement of 4% led to 21% increase in DC component together with a depth relocation of 7 km. This implies 
that some source parameters or combinations thereof are highly sensitive to subtle waveform differences and 
Earth structure, and can therefore only be resolved with a reliable 3-D Earth model.

7.3.  Effective Source Solutions

In this study we have presented effective, that is, period-dependent, point-source solutions, inferred with 
different-period data. In the following, we discuss means of how varying frequency data can lead to effective 
source parameters.

7.3.1.  Source Complexity

Spatial and temporal complexity of the source have been previously suggested to explain the discrepancy between 
short- and long-period source mechanisms (e.g., Frankel, 2013; Grandin et al., 2015; Wallace et al., 1982). For 
example, it has been argued that asperities on the fault surface generate shorter-period seismic waves, while the 
overall faulting episode is represented by the long-period waveforms (Wallace et al., 1982). However, a typical 
Mw 5 event, such as those selected for our study, should not exceed several seconds in half-duration and a few 
kilometers fault surface radius, which makes it unlikely for 15 s period data to constrain a subfaulting episode, 
as the periods are much longer than the expected duration of the earthquake (Ekström et al., 2012; Eshelby & 
Peierls, 1957; Hanks, 1977).

7.3.2.  Near-Source Anisotropy

Another possibility, which could explain effective source solutions, is related to the near-source heterogeneities 
and specifically, anisotropy. Anisotropy arises from different, scale-dependent mechanisms (e.g., Backus, 1962; 
Kawakatsu et al., 2009; N. Wang et al., 2013). Such a frequency-dependent nature of observed anisotropy has 
indeed been reported beneath Japan (Wirth & Long, 2010) and other subduction zone regions (e.g., Fouch & 
Fischer, 1998; Greve & Savage, 2009). Anisotropy in the immediate vicinity of the source can affect wave prop-
agation in such a way that a purely isotropic event might appear to have excited shear waves, while a shear 
earthquake might appear to have had a non-DC component (e.g., Kawasaki & Tanimoto, 1981; Li et al., 2018; 
Vavryčuk, 2004). The effective source solutions might arise from the fact that the fine-scale anisotropy is only 
captured by the shorter-period waves, while longer-period waves sample an effective medium over larger scales. 
Therefore, at short-period inversions (15–80 s), where the fine-scale anisotropy around the source is accounted 
for, the apparent CLVD component decreases, while at long periods (50–80 s), it remains relatively high.

7.3.3.  Information Content

Long-period data may not contain enough information to properly constrain the source parameters of relatively 
small-magnitude earthquakes. First, data are more correlated at longer-periods and hence, carry less independent 
information. This results in inherent trade-offs between moment tensor components, such as Mzz and (Mxx + Myy), 
which trade off in the case of long-period surface wave inversion (Dufumier & Rivera, 1997; Fitch et al., 1981). 
Second, the amplitude spectrum of small-magnitude events tends to decrease with increasing period (Aki, 1967), 
and hence, the signal-to-noise ratio at long periods may therefore, be diminished.

Long-period data used in this study, that is, body and surface waves in the 50–80 s period band, are comparable 
to the data used to construct the GCMT catalog. The reported minimum periods of body and surface waves, used 
to constrain the earthquakes chosen for our study, are 40 and 50 s, respectively (The Global CMT Project, 2021). 
Although the azimuthal coverage in the GCMT inversion may be more complete than in our study, due to the 
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available teleseismic data, the lack of seismic receivers in the north-western Pacific Ocean is evident (Ekström 
et al., 2012). Similarity between data periods could potentially explain why our long-period source solutions are 
in a close agreement with the GCMT predictions.

7.4.  Effect of the Prior

The source parameters constrained with long-period data are often very close to the prior model, that is, the 
GCMT solution, which we use for the majority of the inversions. In the Bayesian framework, the fact that the 
posterior closely resembles the prior can mean two things: either the likelihood is very similar to the prior and 
hence prefers the same solution, or the data constraints are weak, and the posterior is dominated by the prior 
probability density distribution.

Although stochastic algorithms are direct search methods, theoretically giving us a chance to obtain probability 
density functions of a full model space, its practical implementation might be very expensive, especially in a 
high-dimensional space. With the aim to speed up the convergence and to alleviate computational costs, we 
introduced a modified version of HMC. If well tuned, HMC can be a very efficient sampling algorithm for its 
gradient-based approach of proposing the samples. The derivative should in principle be computed at every point 
along the Hamiltonian trajectory. However, this is expensive, and in our formulation we suggest to approximate 
the derivative around a prior mean in model space, instead (Fichtner & Simutė, 2018). The derivative is exact 
for the parameters linearly related to data (i.e., the moment tensor components), but it is an approximation for 
non-linear parameters (i.e., centroid). We note that this approximation only concerns the samples drawn to be 
proposed, and not the acceptance criterion, which should still ensure that even with this approximation, only rele-
vant models are accepted. Furthermore, if we let our sampler run for an infinite amount of time, the way samples 
are proposed would not matter. However, during the finite run time, the posterior might actually be biased toward 
the point in model space around which the approximation is performed, which in our case is often prior mean.

7.5.  Data and Modeling Errors

In this study we pragmatically treated observed data noise and forward modeling errors. We conservatively 
estimated data noise from the pre-signal recordings, and assumed it to be normally distributed without spatial or 
temporal correlation. This is a simplification, as data errors are expected to be correlated, especially at longer peri-
ods. For this conceptual demonstration we also did not account for the forward modeling errors. Efforts to prop-
erly incorporate modeling errors and data noise covariances in stochastic inversions were made by for exam ple, 
Staehler and Sigloch (2014, 2017), Vackár et al. (2017), Hallo and Gallovič (2016), Duputel et al. (2012).

7.6.  Isotropic Component

Due to its poor resolvability, the isotropic component is typically ignored in the source inversion studies (e.g., 
Hejrani et al., 2017; Lee et al., 2011; Liu et al., 2004; Staehler & Sigloch, 2014) and in most earthquake catalogs. 
Examples include the catalog of the Southern California Seismic Network (SCSN) (Clinton et al., 2006; Hutton 
et al., 2000), the Global CMT project (Dziewoński et al., 1981; Ekström et al., 2012), the NIED earthquake cata-
log in Japan (Kubo et al., 2002). The resolution of the isotropic component is limited by the fact that the Mzz term 
does not excite Love waves, and in the Rayleigh wave excitation it trades off with the (Mxx + Myy) term at long 
periods (Dufumier & Rivera, 1997; Fitch et al., 1981). Furthermore, body waves for both the isotropic component 
and the vertical CLVD are excited without the azimuthal dependence, which complicates their recovery with 
data recorded only at the surface (Dufumier & Rivera, 1997; Fitch et al., 1981; Kawakatsu, 1996). The isotropic 
component therefore, tends to be constrained to prevent unexplained waveform differences from being mapped 
into an additional parameter (e.g., Vavryčuk, 2004).

In this study we performed unconstrained inversion, thereby allowing the source parameters to be freely deter-
mined by the data. Through a reliable Earth model we improved the waveform fit, and owing to both body and 
surface wave measurements over a wider frequency range (15–80  s), the trade-offs between the Mzz and the 
(Mxx + Myy) terms might have been alleviated. As shown in Section 6.1.3, including shorter-period data in wave-
form inversion, indeed facilitates the resolution of the diagonal components. Due to a greater range of take-off 
angles, deeper events could further benefit the resolution of the isotropic component.
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7.7.  Station Coverage

While hosting numerous seismic events, the choice of the Izu-Bonin trench as 
a source region is also challenging due to an azimuthal gap in the south-east. 
Although a good station coverage is typically sought after for a better source 
parameter resolution, it has been shown that waveform inversion of the fault 
plane solution is not significantly affected by the lack of azimuthal coverage 
(e.g., Cesca et al., 2006; Dreger & Helmberger, 1993). Furthermore, no linear 
combination of physical parameters was found in this study (Section 6.3.2) to 
be consistently worse resolved across all the events, which would be expected 
if station coverage was playing a limiting factor in source parameter resolv-
ability. Lastly, our solutions at longer periods converge toward the GCMT 
solutions, suggesting that either stations used in both cases were similarly 
distributed (as discussed in Section  7.3.3), or that a 3-D structural model 
enhances the resolvability of source parameters, as also indicated by Donner 
et al. (2020).

7.8.  Trade-Offs Between Structure and Source

Because of the trade-offs between Earth structure and earthquake source 
parameters, it is challenging to constrain them independently (e.g., Hejrani 

et al., 2017; Hjörleifsdóttir & Ekström, 2010; Morales-Yáñez et al., 2020). In this study, we proceed with a two-step 
approach: first we constrain the structure, then, with a suitable Earth model at hand, we aim to recover improved 
source parameters. In an idealized scenario, where the probability density distribution between the source and the 
structure parameters would be Gaussian, this procedure would look rather straightforward (Figure 18). However, 
the real world presents many complications. First, we do not have much constraints on the model space of the 
Earth structure except for the least-squares solution. Second, such a unimodal distribution might be an over-
simplification. Lastly, the probability density distribution is likely to be frequency-dependent, with increasing 
complexity at increasing frequencies. Therefore, locating a global minimum in the source—structure space might 
actually be a very difficult task, especially at shorter periods. Such a two-step approach could potentially favor 
the original source solutions, used in the tomographic study. We attempted to reduce such a dependency by using 
the NIED solutions for structural inversion and the GCMT solutions for comparison and as prior means in the 
moment tensor inversions.

8.  Conclusions
We presented results of a probabilistic seismic source inversion for 13 small-to-moderate magnitude offshore 
earthquakes at the Izu-Bonin trench. The inversions were conducted using fully heterogeneous, radially aniso-
tropic Green's functions and the HMC sampling algorithm. We simultaneously inferred centroid location, 
centroid time and six independent moment tensor components, and ran a separate inversion constraining the 
isotropic component to zero for comparison purposes. With the goal to use a sufficiently good Earth model, we 
varied the minimum inversion period and limited ourselves to those period bands, for which the data fit between 
the observed data and the maximum-likelihood solution was sufficiently good.

Accounting for 3-D Earth structure at short periods (15–80, 20–80 s) generally leads to an increase in DC compo-
nent compared to the GCMT solution (Figure 14). This suggests that at least some part of the non-DC component 
in the GCMT catalog might be apparent—resulting from unmodeled Earth structure. Events inverted at longer 
periods (e.g., 50–80 s) (Figure 15), do not show a significant change in mechanism or centroid location and stay 
close to the GCMT predictions. We have presented several possible mechanisms to explain the effective solu-
tions, the most likely being near-source propagation effects, which cannot be resolved by long-period data, or 
weakening data constraints with increasing periods.

Figure 18.  An idealized sketch of source and structure inversions in a 
two-step procedure.
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Constraining isotropic component to zero is a common practice in order to stabilize the inversion and to prevent 
unexplained waveform differences from mapping into the additional parameter. Here, we observe that owing to 
the 3-D Earth model, isotropic component remains weak even when unconstrained.

The diagonal components of the moment tensor, which are responsible for the volumetric change, are signif-
icantly less constrained, compared to the off-diagonal ones (Figure 10 and Figure S8 in Supporting Informa-
tion  S1). From the events which could be inverted in all period bands, we also see that shorter-period data 
constrain the source parameters better than the long-period data (Figure 10 and Figure S8 in Supporting Informa-
tion S1). Posterior probability density distributions of shorter-period data inversions appear multimodal and are 
more complicated than those of long-period. This illustrates non-uniqueness of short-period source inversions 
and highlights the need for stochastic approaches.

We note that finding a solution, which has a significantly better waveform fit than that provided by the GCMT 
catalog, is a challenging task. In our examples, the waveform fit only improves by several percent (Figure 13). 
However, a small change in the waveforms brings about a significant change in the source solution. In other 
words, large variations in source parameters are hidden in the subtle waveform differences, which are possible to 
extract only by virtue of a good Earth model.

To aid the study of the multi-dimensional posterior, we perform PCA. We include all the study events at their 
shortest acceptable inversion period band, with the aim to retrieve the best- or the least-constrained direction in 
model space. By comparing the PCs (eigenvectors) corresponding to either the smallest or the largest eigenvalues, 
we find no consistency among different events from the same period-band inversion group. Each event is charac-
terized by a very different set of PCs, and no linear combination of physical parameters stands out as the least- or 
the best-constrained direction in model space.

In this conceptual study, we detailed the methodology for a probabilistic source inversion using 3-D Green's func-
tions and presented a proof-of-concept catalog of source solutions. Such an approach allows us to better constrain 
source characteristics and comes with the ensemble statistics, such as uncertainty limits and inter-parameter 
trade-offs. Inferred source parameters contribute to our understanding of the regional seismotectonics and earth-
quake physics and can also be fed back into and, potentially, improve tomographic studies.

Data Availability Statement
All seismic waveform data used in this study are freely available from the Full Range Seismograph Network 
of Japan (F-Net, http://www.fnet.bosai.go.jp), the Broadband Array in Taiwan for Seismology (BATS, http://
bats.earth.sinica.edu.tw), the Korea National Seismograph Network (http://www.kma.go.kr/weather/earthquake/
internationallist.jsp), and the China National Seismic Network, the New China Digital Seismograph Network, the 
Northeast China Extended Seismic Array, the Global Seismograph Network, and the Korean Seismic Network, 
made available by the IRIS Data Management Center (http://ds.iris.edu/ds/nodes/dmc/). The centroid moment 
tensors were obtained from the Global Centroid-Moment-Tensor Catalog (www.globalcmt.org, http://ds.iris.edu/
spud/momenttensor) and National Research Institute for Earth Science and Disaster Prevention Seismic Moment 
Tensor Catalog (https://www.fnet.bosai.go.jp/). Seismic wave propagation software, SES3D, used to model the 
waveforms is available on https://cos.ethz.ch/software/production/ses3d.html. Seismic tomography model of the 
Japanese islands, developed and used in this study, can be downloaded from https://cos.ethz.ch/research/CSEM.
html. Processed observed as well as synthetic waveform data for all the study events are available at https://doi.
org/10.5281/zenodo.7384213 (Simutė, 2022).
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