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Over the last century, many of the fundamental advances in
our understanding of the solid Earth have been underpinned
by seismic observations recorded on long-running networks of
globally distributed seismic instruments (e.g., Agnew et al.,
1976; Romanowicz et al., 1984; Hanka and Kind, 1994;
Peterson and Hutt, 2014; Ringler et al., 2022a). During this
time, seismic data quality and the speed of dissemination have
improved substantially from early analog paper records to dig-
ital, very broadband data transmitted in near-real time (Steim,
2015) and rapidly archived in online data repositories with
associated metadata (e.g., Ahern, 2003; Suarez et al., 2008).
With these significant advances in data quality, dissemination,
and storage, global seismic networks are poised to continue to
aid in answering key scientific questions about the Earth.

For example, global velocity models and tomographic
images of the Earth have continued to evolve from studies
using distinct seismic phases (e.g., from surface waves, P waves,
S waves, and normal modes) from analog and early digital
global seismic networks (e.g., Dziewoński and Anderson, 1981;
Woodhouse and Dziewoński, 1984; Grand, 1994) to full-wave-
form inversions utilizing modern broadband seismic data
acquired from thousands of stations (e.g., Bozdağ et al., 2016;
Lei et al., 2020; Thrastarson et al., 2022). The long-running
nature of global seismic networks in particular enables scien-
tists to investigate long-term changes across a multitude of
Earth processes ranging from volcanic eruptions (Kanamori
and Mori, 1992; Matoza et al., 2022), the rotation rate of
the inner core (Song and Richards, 1996), and variations in
ocean temperature (Wu et al., 2020) and wave activity (Aster
et al., 2023). In addition, the instrumentation, infrastructure,
and coverage of global seismographic networks (GSNs) allow
for the high-fidelity recording of long-period signals, such as
normal modes (e.g., Park et al., 2005; Bogiatzis and Ishii, 2014;
Ringler et al., 2022b) and gravitational perturbations arising
from great earthquakes (Vallée et al., 2017).

In this Focus Section, we selected manuscripts that lever-
aged the exceptional capabilities of global seismic networks
to advance knowledge of Earth processes and structure, from
the inner core to the atmosphere and beyond. In total, this
Focus Section encompasses six research articles along with
three Data Mine articles about the GSN and GEOSCOPE
networks.

Staats et al. (2023) provide a glimpse of the scientific utility
of the GSN by considering data turnover rate and studies that
either directly used seismograms from GSN stations or indirect

data products (e.g., earthquake catalogs and tomographic mod-
els). Importantly, they find that citations of the GSN are under-
represented in the literature by a factor of 3. Correction of this
problem would be helped by a culture shift in how scientists
acknowledge the data that underpin their studies. In addition
to encouraging researchers to cite network digital object iden-
tifiers from data used in the study, Staats et al. (2023) also
encourage journals, editors, and reviewers to promote this pol-
icy to avoid underrepresented citations in the future.

One theme in this Focus Section is the use of highly auto-
mated methods to improve earthquake detection and characteri-
zation that can be applied to a global data set over long time
spans. These methods leverage advances in seismological soft-
ware, computational algorithms, and databases to handle large
data sets. For instance, Poli (2023) conducts a comprehensive
search of global seismic data to identify and catalog sources
of long-period (>25 s) seismic energy for 2010–2022. This effort
builds on previous studies (e.g., Shearer, 1994; Ekström, 2006)
and focuses on identifying long-period seismic energy using a
shift and stack algorithm combined with a detection and location
algorithm. A significant number of previously unknown low-
frequency events are identified. Most of the new events occur in
polar regions, although some occur along oceanic ridges and
other volcanic regions. A substantial improvement in event
detection occurs in Antarctica, with these events likely due to
glacial processes. This type of systematic processing may provide
new ways to link seismic monitoring with environmental change.

A sophisticated computational approach is also applied by
Münchmeyer et al. (2023) to improve event-depth estimates
using a global catalog of earthquakes to train two deep-learning
models to detect and pick depth phases. One model is applied to
each station independently, whereas the second model jointly
analyzes multiple seismograms. The models use a probabilistic
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backprojection approach that allows for the propagation of
uncertainty estimates as part of the analysis. Their work high-
lights the potential improvements in global detection capabilities
that can be realized through combining machine learning tech-
niques with data from global seismic networks.

Global seismic networks offer a framework for rapid charac-
terization of damaging earthquakes and improved timeliness of
earthquake early warning alerts (e.g., Jaiswal et al., 2010; Allen
and Melgar, 2019). For very large earthquakes, prompt elastog-
ravity signals (PEGS) can be observed even before the arrival of
seismic P waves (Vallée et al., 2017). Juhel et al. (2023) demon-
strate the value of PEGS observations used in combination with
more conventional low-frequency (W phase) recordings to
establish the main fault parameters of large earthquakes in
near-real time. For the 2011 Mw 9.1 Tōhoku–Oki earthquake,
their approach would allow determination of a stable Mw and
focal mechanism within as little as 5 min from origin time. This
is at least twice as fast compared to inversions relying on
regional W phase alone.

Advances in seismic instrumentation illustrate possible paths
toward denser seismic networks and better signal detection. The
advent of distributed acoustic sensing (DAS) has provided a new
way to capture the Earth’s seismic wavefield with an unprec-
edented spatial sampling, at the local and even regional scale.
Wuestefeld et al. (2023) document the first effort made to gather
data fromDAS systems distributed all around the world to build
a Global Fiber Sensing Network (GFSN). Earthquakes of
February 2023 with magnitude above 5 were recorded by 32
DAS systems, with the corresponding data freely available for
download (steps for accessing this data set are documented
within Wuestefeld et al., 2023). One day of continuous data
was also collected. Much of this data were collected at very
low cost by repurposing existing fiber originally installed for
telecommunications. Besides this success, the study also high-
lights challenges for a fully operational GFSN due to massive
data volumes and evolving metadata standards.

Existing stations benefit from new technology as well. Bès
de Berc et al. (2023) documents improved performance of a
GEOSCOPE station (CCD) at the permanent research facility
in Concordia, Antarctica, by installing a borehole seismometer
at 120 m depth. The combination of a remote location of the
station with an innovative installation of a new borehole sensor
has created one of the quietest stations in the world in the
0.1–0.2 s period band. The data from this remote station
are openly available to the scientific community (Institut de
Physique du Globe de Paris and École et Observatoire des
Sciences de la Terre de Strasbourg [IPGP/EOST], 1982).

In addition to the earlier research articles, this issue contains
three Data Mine articles describing the motivation, history,
instrumentation, and future directions of the GSN (Davis
et al., 2023; Wilson et al., 2023) and GEOSCOPE (Leroy
et al., 2023) seismic networks. We note that a similar review
of the GEOFON network (Quinteros et al., 2021) has recently

been published in Seismological Research Letters outside of this
Focus Section, and Ringler et al. (2022a) provide a review of
some of the recent seismological studies enabled by global net-
works of seismographs.

Leroy et al. (2023) discuss the development and build out of
the GEOSCOPE very broadband network. This network of 34
stations operates in 18 countries and provides data from some
of the most remote locations on the globe. These stations are
important for characterizing seismic sources, but they have
also played a critical role, along with other stations, in imaging
the interior of the Earth. The build-out of the GEOSCOPE
network in the early 1980s happened at a time when several
technological advances were achieved (e.g., the extended band-
width of the Streckeisen STS-1 seismometer to being flat to
velocity to 360 s, the development of digitization techniques
that allowed for high-resolution digital data streams). The abil-
ity for GEOSCOPE to make use of these developments during
the initial build-out helped pave the way for other networks to
harness these new technologies.

Two articles address the two main components of the GSN.
Wilson et al. (2023) focus on the U.S. Geological Survey-oper-
ated component of the GSN (two-thirds of the network),
detailing its evolution since the founding of the network in
the late 1980s through the present. In addition, potential future
improvements through technological advances and opportuni-
ties are discussed. Aside from network operations, Wilson et al.
(2023) highlight the major role played by the GSN in many
of the world’s fundamental operational systems (e.g., strong
earthquakes information, tsunami early warning, monitoring
of nuclear testing, etc.), as well as in major and more funda-
mental scientific advances made by the Earth science commu-
nity. The remaining component of the GSN is operated
by International Deployment of Accelerometers (IDA) at
the University of California, San Diego. Davis et al. (2023)
detail the inception of project IDA as a network of 24, digitally
recorded LaCoste–Romberg gravimeters in the 1970s through
to its expansion to the present network of 40 multisensor,
very broadband stations. The data from these networks have
led to fundamental discoveries about the structure of the
Earth’s deep interior as well as atmospheric-solid Earth cou-
pling processes.

This Focus Section demonstrates the symbiotic relationship
between global seismic network operations and data users
spanning the range of university researchers to government
agencies tasked with mitigating loss of life and property to
damaging earthquakes. As illustrated by Staats et al. (2023),
high-quality seismic data from GSNs underpin a broad swath
of seismological research. Future enhancements in data
processing and instrumentation could lead to several advances
in event detection and characterization. One potential avenue
would be the routine use of PEGS observations (Juhel et al.,
2023), which have the potential to improve the response time
for both tsunami and earthquake warning systems.
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These articles outline key objectives for the future evolution
of global networks:

1. Continued improvements in seismic data quality and sta-
tion reliability (Bès de Berc et al., 2023; Juhel et al., 2023;
Leroy et al., 2023; Wilson et al., 2023).

2. More complete spatial coverage of seismic stations across
the globe (Leroy et al., 2023; Poli, 2023; Wilson et al., 2023),
including the future aspirational goal of extending high-qual-
ity observations of groundmotions to seismometers emplaced
on the ocean floor (Kohler et al., 2020; Leroy et al., 2023;
Wilson et al., 2023; Wuestefeld et al., 2023) and within the
oceans. New sensors, such as DAS (Wuestefeld et al.,
2023) and autonomous floating seismographs (Simons et al.,
2019), may play an important role in achieving this goal.

3. Leveraging emerging data processing techniques including
machine learning (Leroy et al., 2023; Münchmeyer et al.,
2023; Wilson et al., 2023) and neural networks (Juhel
et al., 2023) to improve data quality and analysis.

In addition, the long-running and multiinstrument nature
of the GSNs are fundamental for understanding interactions
between the solid Earth and the hydrosphere, cryosphere,
and atmosphere, a topic that is of increasing importance and
interest. For instance, collocated pressure sensors at GSN and
GEOSCOPE stations provided essential data for characterizing
and understanding the complex acoustic-to-seismic coupling
process that occurred following the 16 January eruption of
Hunga Volcano, Tonga (e.g., Matoza et al., 2022; Vergoz et al.,
2022; Anthony et al., 2023; Ringler et al., 2023). Furthermore, the
decadal scale records from global seismic networks can be used to
track changes in climate including ocean storms (Aster et al.,
2023), sea ice concentration (e.g., Grob et al., 2011; Anthony
et al., 2017; Turner et al., 2020), and glacial calving events (e.g.,
Ekström et al., 2006; Nettles and Ekström, 2010; Poli, 2023). We
look forward to continuing to work with the international seis-
mological community to provide high-quality data and innovate
our networks to enable the continued advancement of science.
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