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Abstract. Using a quasi-static three dimensional fault model which accounts for
long range elastic interactions, we examine the influence of spatial heterogeneities of
frictional strength on the slip distribution along a creeping fault. Slip fluctuates spatially
because of pinning on local asperities. We show that three regimes of slip correlations
exist. The first regime results in a uniform slip in an homogeneous medium. On the
contrary, slip in the second regime highly fluctuates and is controlled by heterogeneities
of frictional strength. The third regime is intermediate and develops areas of high
slip that are much bigger than the local asperity size (self-affine properties of the
slip distribution). This particular regime illustrates the possible misinterpretation of
low frequency slip data (e.g. interferometric and GPS data) in terms of structural or

compositional properties along the fault.



Spatio-temporal complexity of the rupture process and the earthquake activity have
become an evidence with the increasing resolution of near field strong ground motion
records. Sources have been shown to present large heterogeneities in the coseismic
slip and the rupture velocity [Archuleta, 1984; Brune, 1991; Cotton and Campillo,
1995]. More recently, various combined inversions of interferometric, GPS and strong
motion data have been used to better constrained the source tomography [ Wald, 1996;
Hernandez et al., 1999; Delouis et al., 2000]. Recent works (Rubin et al. [1999]; Nadeau
et al. [1995]) have shown also the existence of spatio-temporal correlations between
micro-earthquakes occuring along creeping faults. The origin of this complexity is
still poorly understood and often explained as generated by a combination of a static
prestress field and fault structural or compositional heterogeneities. Whether the
observed slip and slip rate patterns may reflect the underlying frictional or geometrical
properties of the fault remains an important question. The goal of this work is to
address, using a rather simple fault model, this hypothesis and to study the influence of
quenched strength heterogeneities on the slip distribution of slow creeping faults.

We consider a simple scalar elastic model of the rupture along a fault plane, located
at y = 0, within an unbounded homogeneous elastic solid assuming constant normal
stress. The problem is governed by a scalar wave equation involving a two-dimensional
displacement field U(z,y;t) and a related shear traction o(z,y;t). The actual slip
u(z;t) = U(z,0%;t) — U(x,07;¢) is the slip discontinuity across the fault plane and
7(z;t) denotes the associated perturbation of traction. Since we focus on creeping
faults, we assume that slip occurs quasi-statically and neglect any dynamical effects. In
that case, we can neglect the radiation damping term and the stress change 7(z;t) due
to variations of slip discontinuity along the fault is given by (e.g. [Cochard and Rice,

1997))
r(@it) = 2PV [ J(o = &)[u(;) - ulz; )] d (1)

where integration takes place over the fault of size L and PV indicates the principal



value. The elastic kernel J(z) = 1/z? accounts for the long range elastic interactions
and f is the shear modulus. For plane strain, u = u,, 7(2;t) = 0y,(2,0;t) and a =1 —v
while for anti-plane strain, v = u,, 7(2;t) = 0,,(z,0;t) and @ = 1. For simplicity,
we assume an L periodic interface in the z direction such that the 1/z? kernel in (1)
transforms in Jy,(z) = (7/L)?/sin®(nz/L).

To account for heterogeneous frictional properties along the interface, we balance
7(x;t) with a random quenched friction strength 7, (z; u(x;t)). We assume that strength
fluctuations along the fault are strongly correlated over a scale a, and uncorrelated
on larger scales. The scale a is assumed here to be small compared to the fault scale
L (L/a < 1) and defines the scale of the fault asperities. In the remaining, the
discretization length for the fault model will be chosen as the asperity scale a. Since we
have assumed no spatial correlation between asperities, the friction strength 7, (z; u(z;1t))
is assumed to have a uniform probability density over the interval [n. — d7¢; 7. + 0nc).
For sake of simplicity, we set a = 1 (and any length scale of the problem is given in units
of a).

It follows that, at any time, the quasi-static evolution motion of the fault has to
satisfy:

(2 u(x; 1)) > 7(231) (2)

for all points x of the interface I'. The evolution of the system may be regarded as
purely dissipative, i.e. all the energy being used in frictional work [Fisher, 1998].

We assume that the fault is creeping at an arbitrary slow displacement rate so that
only one asperity slips at a time allowing all the configurations of the slip distribution to
be explored in the spirit of a Monte-Carlo simulation. At each step of the calculation,
only the weakest point slips of an elementary distance s which defines the unit length
in the direction of propagation. The fault evolves at imposed displacement and is
characterized by the mean slip @ = (1/L) Y%, u;. Therefore the time ¢ in equation (2)

should be replaced by @ which is the relevant variable for describing the evolution of



slip. However, time may be introduced by noting that the average slip u of the fault
obeys u = Vj t, where Vj is the tectonic slip rate.
The weakest asperity z,.q. corresponds to the site where the yield function Y

(defined as the difference between frictional strength and shear traction) is minimum:

Y (Zwear; @) = min[n, (; u(e; 7)) — 7(2;7)] (3)

The asperities are supposed to experience new frictional properties after local slip
(instantaneous healing) with 7,(Zyeak; U(Twear; @)) updated according to the uniform
probability distribution. The asperity dislocation at Zyeq, induces, according to (1),
a long range variation of the shear traction 7(x) along the fault. Then a new moving
asperity is determined and the procedure is repeated again to explore successive
equilibrium position of the fault.

The behavior of the system is controlled by the competition between local
fluctuations of the frictional strength and the effect of long range elastic interactions.
Using (1) the stress drop of a point that just slipped by an amount is s is 2 us/(7a).
This allows to define a dimensionless parameter v = p5v/12/(m a6 n.) where 2 6n./+/12
is the rms of the frictional strength distribution.

When v is much greater than 1, the elastic interactions screen the effect of the
fluctuations of the frictional strengths. The heterogeneities are not strong enough to pin
the front and slip can never be arrested. In our model for imposed displacement, the
slip runaway is controlled, in contrast with a stress controlled boundary condition. For
this pulse-like propagative regime, heterogeneities play a minor role and therefore this
regime will be refered as the weakly heterogeneous (WH) regime.

When 7 is much smaller than one, we observe an extreme regime where recurrent
slip activity can occur at the same point since the stress drop due to elastic interactions
is not big enough (compared to 07.) to unload the point. This regime will be refered as

the strongly heterogeneous regime (SH). In this case, the slip field is expected to have



the same statistical distribution than the fluctuations of the frictional strength, e.g. a
white noise in the present study.

For the intermediate regime, the magnitude of the elastic interactions are of the
order of the amplitude of the frictional strength variations. This is the pining regime (P)
where interactions between frictional heterogeneities and elastic stress transfers lead to
non trivial spatio-temporal correlations of slip in particular a self-affine scale invariance.
Such a scale invariance is also observed for a crack front propagation [Schmittbuhl and
Malpy, 1997].

The simulations start with a zero displacement field. Figure 1 shows various slip
distributions in steady state related to v = 1074, 107! and 102 illustrating the three
regimes mentioned above.

In the P regime, the slip distribution reaches a stationary state which is relevant
for mature creeping faults (i.e. faults which have undergone a sufficient amount of slip).
Figure 1 for v = 0.1 shows a typical slip distribution in the steady state regime: No
characteristic length scale appears. The self-affine invariance of the slip fluctuations
along the fault is characterized by the Hurst exponent ¢ which can be estimated using
the auto-correlation function g(z,z';u) =< [(u(z;7) — u(z';u)]* >, (where < ... >,
means average over the whole fault). For a self-affine signal, the auto-correlation
function behaves like a power law i.e. g(z,z';%) o |z — 2'|* and implies du o< §z¢ where
du =< u(x + dz) — u(z) >, represents the mean fluctuation of slip on the fault over a
length 6. Many methods (variable bandwidth, return probability, Fourier spectrum,
wavelet analysis, etc..., as discussed for instance in Schmittbuhl et al. [1995b]) may be
used to measure (. For example the power spectrum P(k) (i.e. Fourier transform of the
auto-correlation function mentioned above) of a self affine signal with Hurst exponent
shows a power law behavior P(k) oc k~'=%. Using this last method, we found ¢ ~ 0.35
a value consistent with previous estimates of ¢ in similar models ([Schmittbuhl et al.,

1995a; Schmittbuhl and Vilotte, 1999]).



We investigate space-time (where time should be understood as mean slip) in the
stationary regime by studying the increment evolution between two states of the system
separated by a slip An. The evolution can be analyzed computing the power spectrum
of the slip increment Au(z; At) =< u(z;u + Au) — u(z;u) >z where < ... >z means
averaging over all the configurations @. The power spectrum Pa,(k) of Au(z; A7) is
plotted in figure 2 for a system of size L = 4096 and various values of A7w. For small
increments A%, the spectrum is essentially flat showing that the spatial correlations
between successive slip distributions occur at very short wavelengths. As Aw increases,
the spectrum reaches a power law trend characteristic of self-affinity where correlations
exist at all length scales. Self-affinity develops only over scales lower than a characteristic
spatial scale £(A%) which defines an activity zone that spreads with the evolution of the

slip increment AT as (e.g. [Tanguy et al., 1998)])
£ o« Au'/? (4)

where z is a dynamic exponent. In the Fourier domain, the power spectrum should
exhibit a power law trend for frequencies higher than cste/{(A%) and be flat for lower
frequencies. This behavior is illustrated in figure 2. The spreading of the activity
continues until the activity zone £ reaches the system size L defining a characteristic
slip increment Awy,. At that stage, the power spectrum will not evolve for slip greater
than A7y, since correlations have developed over the whole system size. The slope of the
linear trend of the power spectra in figure 2 is -1.7, a value consistent with the self-affine
scaling of @ (£ ~ 0.35).

The spatial correlations of slip can be related to the temporal ones since z = ( + 1
(e.g. [Tanguy et al., 1998]). After a slip increment AT, the activity is localized within a

region of extension & oc AT'/?

. The number of asperities that have slipped during that
move is proportional to the slip area i.e. AT oc £11¢, where the relation A% o< ¢ has

been used. The number of asperities is also proportional to the slip increment A7u so



that £11¢ oc &% giving the expected relation.

The spreading of the activity with increasing displacement in the P regime results
from two competing effects: long range elastic interactions and frictional strength
heterogeneities. The former tends to strongly correlate slip laterally while the latter
tends to pin the slip at one site. Figure 3 shows the activity maps or locations of active
sites as slip @ is evolving for various values of the parameter v (y = 107%, 10~ and 10%).
In the propagative regime WH (top panel), the slip propagates laterally as observed
in the zoom window. The size of the activity is expected to scale with displacement as
¢ < T (2 = 1) since the slip of an asperity triggers only the motion of its immediate
neighbor.
In the strongly heterogeneous regime SH (middle panel of fig. 3), the activity is
analogous to a brownian motion. The activity is spread all over the fault since the
elastic coupling is too weak to overcome the frictional strength fluctuations. In this case,
¢ xu'/? (z =2, ( = —1/2) as expected for a classical diffusive process. In the pining
regime P (bottom panel), we observe a clustering of slip as shown within the zoom
window of the activity map (fig. 3). We found z ~ 1.35 as in Schmittbuhl et al. [1995a],
a value bracketed by the z =1 of the WH regime and the z = 2 of the SH regime.
We have studied so far spatial correlations of the asperity slips. At the scale of
the fault, one can introduce a friction force F.(@) defined as Y (Zyeqr; @) given in (3).
F.(@) is the yield force above which the fault is moving. The energy (frictional work)
dissipated by the fault after slip @ is W (@) = [ F.(\) d\. For the pinning regime P, the
energy power spectrum Py (w) exhibits in figure 4 a power law scaling W(w) oc w2
Such w-square decay could be related to seismological observations of radiated spectrum
for the far-field displacement [Aki, 1967; Houston and Kanamori, 1986].
We have studied a simple model of a creeping fault moving under a slow imposed
displacement with long range elastic interactions and frictional heterogeneities. Three

different regimes of slip fluctuations have been observed according to a non dimensional



parameter v which compares elastic stress coupling and frictional strength fluctuations:
a first regime (y > 1) with a pulse-like propagation of the slip activity; an intermediate
regime (y =~ 1) where the slip activity remains clustered over a characteristic length &,
which results from the competition between long range elastic interactions and frictional
strength fluctuations, and that evolves with the imposed displacement; a third regime
(v < 1) where activity spreads as a brownian motion and where slip fluctuations map
frictional strength fluctuations.

The analysis may have interesting implications for interpretation of low frequency
slip inversions using strong motion, GPS and SAR measurements. The slip fluctuations
observed in our model should have a strong signature in GPS or SAR signals due to
the power law decay of the slip power spectrum. Slip clusters of size &, as observed in
the pinning regime (P), will appear at low frequencies as areas of uniform slip. In the
light of the present analysis, slip patches inferred from GPS or SAR measurements may
be quite misleading when mapped onto fault structural heterogeneities . Indeed, in the

pinning regime the size of a slip activity zone is independent of the asperity size.
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Figure Captions

Figure 1. Examples of the slip pattern in the stationary regime for L = 2048 and v = 1074,
0.1 and 103. Slip is normalized by its maximum value U,q; over the fault. In the case v = 0.1

no characteristic length is observed. Slip distribution exhibits a the self-affine scale invariance.

Figure 2. Power spectrum in the steady state regime of the incremental slip when v = 0.1
for different increment displacements A% and a system size of L = 4096. Starting from short

range correlations, the system develops correlations at every length scales as Aw increases.

Figure 3. Activity maps for L = 2048 and different values of . (top) The regime WH
(v = 10%) is dominated by the elastic interactions which results in a pulse-like propagation of
slip. (middle) The intermediate regime P (y = 10~!) shows the existence of spatio-temporal
correlations and the clustering of the activity. (bottom) regime SH (y = 10~%) is controlled by
the fluctuations of the frictional strength and a random diffusion of the activity all through the

fault.

Figure 4. Power spectrum of the large scale frictional work W for a system size L = 4096.

The best fit has a slope —2 (W (w) x w™?) leading to a scaling W () o u'/2.
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Figure 1. Examples of the slip pattern in the stationary regime for L = 2048 and v = 107%,
0.1 and 103. Slip is normalized by its maximum value 4, over the fault. In the case v=0.1

no characteristic length is observed. Slip distribution exhibits a the self-affine scale invariance.
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Figure 2. Power spectrum in the steady state regime of the incremental slip when v = 0.1
for different increment displacements AW and a system size of L = 4096. Starting from short

range correlations, the system develops correlations at every length scales as AW increases.
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Figure 3. Activity maps for L = 2048 and different values of . (top) The regime WH
(v = 10%) is dominated by the elastic interactions which results in a pulse-like propagation of
slip. (middle) The intermediate regime P (y = 10~!) shows the existence of spatio-temporal
correlations and the clustering of the activity. (bottom) regime SH (y = 10~%) is controlled by
the fluctuations of the frictional strength and a random diffusion of the activity all through the

fault.
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Figure 4. Power spectrum of the large scale frictional work W for a system size L = 4096.

The best fit has a slope —2 (W (w) x w™?) leading to a scaling W (@)  u@'/2.



