Je suis
FR FR
Citoyen / Grand public
Chercheur
Étudiant / Futur étudiant
Entreprise
Partenaire public
Journaliste
Enseignant / Elève

Une expérience à l’échelle des paysages révèle comment la taille des dunes est sélectionnée

En aplanissant un champ de dunes dans le désert de Gobi et en observant à haute résolution l’émergence et la croissance des nouvelles dunes pendant plus de 3 ans, une étude internationale portée par des géomorphologues et physiciens de l’IPGP, d’Université de Paris, de l’ESPCI Paris-PSL et du CNRS a permis de valider les modèles théoriques de formation des dunes. Ces résultats permettent de remonter, via les dimensions caractéristiques des dunes, aux conditions atmosphériques et environnementales qui règnent dans les milieux désertiques, sur Terre comme sur d’autres corps planétaires.

Une expérience à l’échelle des paysages révèle comment la taille des dunes est sélectionnée

Préparation de la zone d’étude, phase d’aplanissement, le 10 Avril 2014 (© Narteau - IPGP)

Date de publication : 20/04/2021

Presse, Recherche

Thèmes liés : Système Terre

Les champs de dunes sont des objets d’étude privilégiés de la recherche en géomorphologie (la science qui étudie la formation des paysages) car ils proposent des motifs réguliers et des formes périodiques observables à toutes les échelles sur Terre et plus largement au sein du Système solaire, comme par exemple sur Mars et Titan (lune de Saturne). Les champs de dunes sont ainsi souvent les premiers paysages observés par les missions d’exploration planétaire.

La formation des champs de dunes résulte des interactions entre le vent, la topographie et le transport des grains de sable qui imposent une taille minimum (approximativement 10 m sur Terre), au delà de laquelle les dunes peuvent se déstabiliser. Cette instabilité est à l’origine des motifs périodiques que l’on retrouve systématiquement au travers de tous les champs de dunes. La périodicité des dunes peut ainsi être directement reliée aux propriétés de l’écoulement (le vent) et de transport (la taille des grains de sable) et donc aux conditions atmosphériques et environnementales dans lesquelles les dunes se développent.

La compréhension des processus physiques à l’origine des dunes et la validation des modèles théoriques par des expériences de laboratoires ou des observations de terrain sont donc des questions qui animent la communauté scientifique depuis longtemps, et font toujours l’objet de nombreuses études, notamment du fait de la complexité à reproduire les conditions initiales favorables au développement de l’instabilité. Les échelles en jeu ne permettant pas d’étudier la formation des dunes éoliennes en soufflerie, une alternative consiste à réaliser des expériences in situ sous des conditions de vent naturelles.

Dans une étude publiée le 19 avril 2021, dans la revue Proceedings of the National Academy of Sciences, une équipe sino-française de scientifiques de l’IPGP, d’Université de Paris, de l’ESPCI Paris-PSL, du CNRS1 et de l’Académie des Sciences de Chine, propose, pour la première fois, une validation, par une expérience hors norme sur le terrain, de l’instabilité à l’origine des dunes.

Les auteurs de l’étude ont commencé par aplanir une zone de dunes de 75×100 m² (l’équivalent d’un très grand terrain de football) à l’est du désert de Gobi, en Chine. Puis, pendant plus de 3 ans, entre 2014 et 2017, l’équipe a mesuré à haute résolution toutes les caractéristiques topographiques des nouvelles dunes qui s’y sont formées, depuis leur émergence jusqu’à leur taille mature.1

Ces données ont ainsi permis de vérifier que la naissance des dunes résultait bien d’un mécanisme de sélection en taille régi par la variation des flux de sable et correspondant à une longueur d’onde de 15 m, qui aboutit à l’émergence d’un motif périodique de même taille à travers tout le site expérimental. L’équipe internationale a pu ensuite comparer ces résultats expérimentaux avec les prédictions d’un modèle d’instabilité dunaire utilisant les propriétés de transport et des vents mesurées en parallèle sur le terrain, et ils ont observé un accord remarquable entre la théorie et les observations !

Cette validation des mécanismes à l’origine de l’instabilité dunaire, permet, d’une part de mieux comprendre l’émergence et l’évolution des champs de dunes sur Terre, mais aussi de remonter aux conditions extérieures qui régnaient lors de la mise en place de ces champs de dunes, et ainsi obtenir des données atmosphériques et environnementales là où il est impossible de les mesurer directement, en particulier sur d’autres corps planétaires.

Réf : Ping Lü, Clément Narteau, Zhibao Dong, Philippe Claudin, Sébastien Rodriguez, Zhishan An, Laura Fernandez-Cascales, Cyril Gadal, and Sylvain Courrech du Pont, Direct validation of dune instability theory, PNAS 2021  Vol. 118 – https://doi.org/10.1073/pnas.2024105118

En savoir plus : 

1. Cette expérience à grande échelle, réalisée dans le cadre du LabEx UnivEarthS, des ANR EXODUNES et SONO et du Laboratoire International Associé SALADYN (CNRS-INSU) est détaillée et virtuellement visitable sur le site exodunes360.fr.

Documents

Dernières actualités
Séismes dans la région de Naples, les explications en vidéo de Patrick Allard
Séismes dans la région de Naples, les explications en vidéo de Patrick Allard
Suite à l'essaim de séismes qui a secoué la région de Naples le 20 mai dernier, Patrick Allard, chercheur émérite au CNRS et volcanologue à l'IPGP, an...
L’orage magnétique exceptionnel observé par l’IPGP
L’orage magnétique exceptionnel observé par l’IPGP
Les 10 et 11 mai derniers, une large partie de l’hémisphère nord a pu observer des aurores boréales à des latitudes exceptionnellement basses. Ces phé...
Une nouvelle micro-plaque tectonique identifiée au nord de la Faille du Levant
Une nouvelle micro-plaque tectonique identifiée au nord de la Faille du Levant
En analysant de façon systématique les images radar Sentinels-2, une équipe internationale met en évidence, dans une étude publiée dans Science Advanc...
Yann Klinger lauréat d’une ERC Advanced Grant 2023
Yann Klinger lauréat d’une ERC Advanced Grant 2023
Yann Klinger, directeur de recherche CNRS et responsable de l'équipe de Tectonique et mécanique de la lithosphère à l'IPGP, a obtenu la prestigieuse s...