Je suis
FR FR
Citoyen / Grand public
Chercheur
Étudiant / Futur étudiant
Entreprise
Partenaire public
Journaliste
Enseignant / Elève

From 3D seismic to 3D reservoir model: study of a near surface heterogeneous example

27/11/2012

IPGP - Îlot Cuvier

14:00

Séminaires Géosciences Marines

Salle 310

Jean Luc Mari

IFP school

Different surface seismic surveys have been recorded on an experimental hydrogeological site that has
been developed for several years near Poitiers (France). The paper shows how 3D seismic imaging can
be used to describe the near-surface heterogeneous aquifer. The acquisition spread is designed to
perform both 3D refraction and reflection seismic surveying.
Refraction survey enables us to obtain a 3D image in depth of a low velocity superficial zone
contrasting with the underlying water – bearing carbonates. Refraction survey shows the main
orientations (N90 and N50) of fracture corridors These two directions have been selected as the
drilling azimuths of two deviated wells C3 and C4.
Reflection survey enables us to generate a 3D seismic pseudo velocity block in depth. The 3D seismic
pseudo velocity block shows the large heterogeneity of the aquifer reservoir in the horizontal and
vertical planes, and confirms the main structural orientations (N90 and N50) identified by the
refraction survey. The low velocity areas correspond to high hydraulic conductivity. In order to
quantify the porosity of the different productive layers of the aquifer, the interval seismic velocities
have been converted in resistivity. For that purpose, the empirical relationship between seismic
velocity and true formation resistivity proposed by Faust ( 1953) has been used. The 3D resistivity
block is converted in porosity, by using the Archie law (1942). The 3D seismic pseudo porosity block
allows us to identify three different water productive layers: an upper layer at 35 – 40 m depth, an
intermediate layer at 85 - 87 m depth and a lower layer at 110 - 115 m. The intermediate layer is
composed of bodies having a porosity larger than 30 %. These bodies represent the most karstic part of
the reservoir. The very high resolution seismic surveying has led to obtain a 3D porosity seismic block
which represents a deterministic high resolution reservoir model. After further calibration, that
reservoir model could be used for flow simulation.