Je suis
FR FR
Citoyen / Grand public
Chercheur
Étudiant / Futur étudiant
Entreprise
Partenaire public
Journaliste
Enseignant / Elève

GPS Array as a Sensor of Lithosphere, Troposphere and Ionosphere

14/10/2011

IPGP - Îlot Cuvier

11:00

Séminaires Planétologie et Sciences Spatiales

Amphithéâtre

Kosuke Heki

Dept. Natural History Sci., Hokkaido University

The Japanese dense array of GPS receivers (GEONET) started operation in 1993, and is currently composed of ~1200 stations. GPS (or GNSS in general) receivers can be compared to a Swiss army knife: it could be used not only for positioning (a knife) but also for various purposes, e.g. remote sensing of tropospheric water vapor or ionospheric electrons (screw driver, tin opener etc). Dense GPS arrays have been found extremely useful for variety of geophysical studies. In this lecture, I briefly review their historical achievements, recent highlights, and future perspectives. In Japan, first generation GPS stations were implemented in 1993 (the Kanto-Tokai region) and 1994 (nationwide) by GSI, Japan. Shortly after the launch, they successfully caught coseismic crustal movement of several major earthquakes, the 1994 October Shikotan (Mw8.3), the 1994 December Sanriku (Mw7.6), and the 1995 January Kobe (Mw7.0) earthquakes. These earthquakes accelerated the densification of the GPS network, achieving 1000 in the number of stations within the following 2-3 years. In addition to coseismic jumps, significative discoveries continued in 1990s, e.g. large-scale afterslip of interplate thrust earthquakes and slow slip events (SSE). Later it was shown that tilt- and strainmeter can better observe short-term SSEs, and InSAR can draw more detailed maps of coseismic crustal movements. Now GPS array is recognized as a good tool to measure crustal movement with high temporal resolution and stability and with moderate sensitivity and spatial resolution. GPS data are also useful to study hydrosphere. Seasonal crustal movements in Japan mainly reflect changes in hydrological loads. Multipath signatures in GPS data also provide useful information on the environment around the antenna, e.g. soil moisture, snow depth and vegetation. I will compare the snow depth record over a winter inferred by analyzing GPS multipath signatures, and observed by a conventional apparatus. GPS can also measure precipitable water vapor (PWV) of troposphere. After intense feasibility studies of GPS meteorology in 1990s, PWV information from GEONET has been routinely assimilated in the operational mesoscale model of the Japan Meteorological Agency since 2009. It is found useful in predicting localized heavy rainfalls that often attack Japan in summer. It is fairly easy to measure ionospheric total electron content (TEC) by using phase differences between L1 and L2 carriers from GPS satellites. Applications of GPS for upper atmospheric studies started for ionospheric disturbances of space weather origins. In 2003, clear coseismic ionospheric disturbances of the Tokachi-Oki earthquake were found, and the GPS-TEC technique has been extensively used to study ionospheric disturbances of solid earth origins, e.g. earthquakes and volcanic eruptions. There are also several recent examples of artificial ionospheric disturbances caused by rocket launches and passage of ballistic missiles from North Korea above NE Japan. In the last part of the lecture, I summarize what the GPS array saw before, during and after the 2011 Tohoku-Oki earthquake. The topic covers not only pre-, co- and postseismic crustal movements, but also results of high-rate sampling, and possible detection of precursory changes in ionospheric TEC immediately before the earthquake. Détails : http://spacecampus-paris.eu/index.php?option=com_content&view=article&id=211%3A14-10-2011-seminaire&catid=37%3Aagenda&Itemid=74&lang=fr