Citoyen / Grand public
Chercheur
Étudiant / Futur étudiant
Entreprise
Partenaire public
Journaliste
Enseignant / Elève

Un nouveau modèle d’apprentissage automatique pour prédire la viscosité des magmas

Une équipe de chercheurs dirigée par Charles Le Losq (IPGP, IUF) a développé un modèle innovant d'apprentissage automatique capable de prédire la viscosité des magmas sur une large gamme de compositions, températures et pressions. Ce travail constitue une avancée majeure pour la compréhension des processus magmatiques, tant sur Terre que sur des exoplanètes.

Un nouveau modèle d’apprentissage automatique pour prédire la viscosité des magmas

Magma en fusion sur une exoplanète (généré par IA)

Date de publication : 04/03/2025

Grand Public, Presse, Recherche

Une base de données inédite et un modèle précis

Pour entraîner ce modèle, les chercheurs ont compilé une base de données exhaustive regroupant près de 29 000 mesures de viscosité de silicates fondus, incluant des données sous haute pression jusqu’à 30 GPa. Le modèle combine des réseaux de neurones artificiels avec des processus gaussiens, permettant une prédiction précise de la viscosité du magma, y compris dans des conditions extrêmes comme celles rencontrées sur les exoplanètes.

Application à l’exoplanète K2-141 b

En appliquant ce modèle à l’exoplanète K2-141 b, l’équipe a mis en évidence le rôle prépondérant de la température dans le contrôle de la viscosité d’un océan magmatique situé sur sa face diurne. De plus, ils ont déterminé que cette planète possède probablement une fine atmosphère de vapeur de roche avec une pression d’environ 0,1 bar dans un rayon de 40° autour du point substellaire.
Un résultat notable de l’étude réside dans l’interprétation des températures nocturnes de K2-141 b. Avec des valeurs supérieures à 400 K, les chercheurs suggèrent la présence d’un manteau partiellement fondu sous la surface, apportant ainsi de nouvelles perspectives sur la structure interne et la dynamique des planètes de lave.

Une bibliothèque open-source pour la communauté scientifique

Le modèle développé est disponible sous forme de bibliothèque Python open source, gpvisc, permettant aux chercheurs du monde entier d’explorer la viscosité des magmas dans divers contextes planétaires et industriels. Cette avancée ouvre de nouvelles perspectives pour la modélisation des processus magmatiques et la caractérisation des exoplanètes rocheuses.
Ce travail a été financé par le Labex UnivEarthS, ANR-10-LABX-0023 et ANR-18-IDEX-0001.

Lien vers la publication

Dernières actualités
Nouvelle interface d’accès aux données géomagnétiques françaises
Nouvelle interface d’accès aux données géomagnétiques françaises
Dans le cadre de sa collaboration avec FormaTerre, le Bureau Central de Magnétisme Terrestre (BCMT) annonce la mise en service d’une interface standar...
Des hétérogénéités anciennes préservées découvertes dans le manteau de Mars grâce aux données de la mission InSight
Des hétérogénéités anciennes préservées découvertes dans le manteau de Mars grâce aux données de la mission InSight
Une équipe internationale menée par l’Imperial College London, l'Institut de Physique du Globe de Paris / Université Paris Cité, l'Université John Hop...
Des planètes en fusion révélatrices de l’histoire interne des mondes rocheux
Des planètes en fusion révélatrices de l’histoire interne des mondes rocheux
Une équipe de recherche internationale, menée par des scientifiques de l’Institut de physique du globe de Paris (IPGP) en collaboration avec des cherc...
La plus ancienne trace d’un environnement sédimentaire marin ?
La plus ancienne trace d’un environnement sédimentaire marin ?
Une nouvelle étude menée à l’IPGP par Zhengyu Long, doctorant en cosmochimie sous la direction de Frédéric Moynier, révèle que la roche d’Akilia, au G...