Citoyen / Grand public
Chercheur
Étudiant / Futur étudiant
Entreprise
Partenaire public
Journaliste
Enseignant / Elève

Un nouvel éclairage de l’histoire de l’atmosphère terrestre à travers les isotopes du néon et du xénon

Une étude révèle comment le dégazage mantellique et la fuite de gaz vers l’espace ont façonné la composition de l’atmosphère au fil des âge.

Un nouvel éclairage de l’histoire de l’atmosphère terrestre à travers les isotopes du néon et du xénon

Inclusions fluides (dont des bulles de gaz) dans des échantillons de quartz âgés de 2.7 milliards d’années.  

Date de publication : 14/11/2025

Recherche

Suivre l’évolution de la composition de l’atmosphère terrestre au cours des temps géologiques permet de retracer l’histoire de notre planète et des processus qui l’ont façonnée depuis plus de 4 milliards d’années. Deux mécanismes majeurs demeurent encore mal connus pour les périodes les plus anciennes : le dégazage du manteau et l’échappement atmosphérique vers l’espace.

Dans une étude publiée dans la revue Science Advances, une équipe de chercheurs de l’Institut de Physique du Globe de Paris (Université Paris Cité, CNRS) et de la Washington University in St. Louis (États-Unis) a analysé la composition isotopique et élémentaire des gaz rares (néon, argon, krypton et xénon) piégés dans des inclusions fluides de quartz hydrothermaux très anciens, issus de la ceinture de roches vertes de Barberton (3,3 milliards d’années, Afrique du Sud) et du Fortescue Group (2,7 milliards d’années, Australie). Véritables capsules temporelles, ces inclusions enregistrent la composition de l’atmosphère au moment de leur formation.

Les résultats montrent que le rapport isotopique du néon (²⁰Ne/²²Ne) était légèrement plus bas dans l’atmosphère primitive, traduisant une activité mantellique intense et un dégazage important de néon solaire au cours des premiers milliards d’années de l’histoire terrestre. Par ailleurs, l’atmosphère archéenne contenait environ deux fois plus de xénon qu’aujourd’hui, confirmant un échappement progressif du xénon vers l’espace et donc un appauvrissement de ce gaz au fil du temps.

Ces observations apportent de nouvelles contraintes sur les processus physiques et chimiques qui ont façonné l’atmosphère de la Terre et éclairent les transitions majeures, comme l’événement de grande oxydation il y a 2,3 milliards d’années, lorsque l’oxygène a commencé à s’accumuler dans l’air.

Lien vers l’article : https://www.science.org/doi/10.1126/sciadv.aea3380

Dernières actualités
Colloque international SOUFRIÈRE50 – Première circulaire
Colloque international SOUFRIÈRE50 – Première circulaire
Cinquante ans après l’éruption de 1976, la Soufrière demeure un volcan de référence pour la recherche, la surveillance et la réflexion collective sur ...
Le Rapport social unique 2024 est disponible : un éclairage sur l’égalité professionnelle femmes-hommes et les conditions de travail
Le Rapport social unique 2024 est disponible : un éclairage sur l’égalité professionnelle femmes-hommes et les conditions de travail
Le décret 2020-1493 du 30 novembre 2020 prévoit que les administrations élaborent chaque année un rapport social unique alimenté par une base de donné...
« Jerk » : une nouvelle méthode prometteuse pour l’alerte précoce des éruptions volcaniques
« Jerk » : une nouvelle méthode prometteuse pour l’alerte précoce des éruptions volcaniques
Prévoir une éruption volcanique à temps pour alerter les autorités et les populations reste un défi majeur à l’échelle mondiale. Dans une étude publié...
L’instrument SPSS, contribution française du CNES et de l'IPGP, à bord de la mission américaine Artemis IV
L’instrument SPSS, contribution française du CNES et de l'IPGP, à bord de la mission américaine Artemis IV
Le CNES (Centre National d’Études Spatiales) et l’Institut de physique du globe de Paris, Université Paris Cité, sont fiers d’annoncer la sélection pa...