Citizen / General public
Researcher
Student / Future student
Company
Public partner
Journalist
Teacher / Pupil

Detection of a gravity signal before the arrival of seismic waves

The Earth's gravitational field is not uniform over the surface of the globe, but depends on the masses (thickness and density in particular) of the various layers present beneath the surface. During an earthquake, ground movements are accompanied by a significant redistribution of these masses, generating significant changes in the earth's gravitational field.

Detection of a gravity signal before the arrival of seismic waves

Subduction at the origin of the Tohoku earthquake

Publication date: 24/11/2016

Press, Research

Related teams :
Seismology

Related themes : Natural Hazards

A disturbance of this gravity field long after the occurrence of an earthquake has already been observed, but the quasi-instantaneous change of this field, during the rupture and before the arrival of the seismic waves, had never been observed before.

The Tohoku-oki megathrust earthquake (magnitude 9.0, Japan, March 2011) provided a unique opportunity to detect such a signal. An international team, including several IPGP researchers, used data recorded by the Kamioka superconducting gravimeter in Japan, located around 500 km from the epicentre, supplemented by data from broadband seismometers in the Japanese F-net network. An analysis of these recordings shows, with a statistical significance of over 99%, that a gravity signal linked to the seismic rupture is indeed present. This discovery opens up new fields of application for Earthquake Early Warning Systems (EEWS).

Subduction processes which led to the occurence of the Tohoku earthquake

Currently, EEWSs are based on the detection of compressional seismic waves (P), which arrive very slightly before the highly destructive shear waves (S). This difference in arrival times (only a few seconds near the rupture) is used to alert the local population and protect all the equipment and infrastructure at risk (cutting off water, electricity and gas supplies, stopping trains and lifts, etc.).

The gravity field signal concomitant with the rupture could save precious seconds before the arrival of the P and S seismic waves. It could also enable the exact magnitude of an earthquake to be determined more quickly, as soon as the rupture is over, whereas current methods take several tens of minutes.

However, implementing a gravity-based warning system will require the development of new instruments capable of measuring the Earth’s gravity field much more accurately than current instruments. Such instruments could come from fundamental physics.

Ref : Montagner, J.-P. et al. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nat. Commun. 7, 13349 doi: 10.1038/ncomms13349 (2016).

Latest news
Charles Le Losq appointed junior member of the Institut Universitaire de France
Charles Le Losq appointed junior member of the Institut Universitaire de France
Congratulations to Charles Le Losq, associate professor in the Geomatériaux team, on his appointment as a junior member of the Institut Universitaire ...
The Science and Art of Paleoseismology : a collective work to enrich research and teaching
The Science and Art of Paleoseismology : a collective work to enrich research and teaching
Paleoseismology aims to understand past earthquakes in order to better predict future ones. This discipline, which is based on the study of the trac...
Hera flies over Deimos on its way to Dimorphos : a major step forward for planetary protection
Hera flies over Deimos on its way to Dimorphos : a major step forward for planetary protection
On 12 March 2025, the European Space Agency's (ESA) Hera probe flew past Mars and its natural satellite Deimos. The aim of this crucial manoeuvre was ...
IPGP supports the Stand Up For Science movement
IPGP supports the Stand Up For Science movement
Stand Up For Science: Mobilising for science and academic freedom. 7 March 2025, a day to defend scientific research and education