Citizen / General public
Researcher
Student / Future student
Company
Public partner
Journalist
Teacher / Pupil

Impact-induced Vaporization During Accretion of Planetary Bodies

A new study by Adrien Saurety and Razvan Caracas (Institut de Physique du Globe de Paris) reveals the significant role of vaporization during the accretion of planetary bodies.

Impact-induced Vaporization During Accretion of Planetary Bodies

Collision between two primordial planetary bodies during the accretion phase / AI-generated image

Publication date: 31/03/2025

Events, Research

Published in The Astrophysical Journal Letters, this research sheds light on how giant impacts, a key process in the formation of terrestrial planets, can induce vapor production, thereby altering the geochemical characteristics of early planetary bodies.
Using first-principles molecular dynamics simulations, the team investigated the shock behavior of silicate systems representative of planetary bodies like Earth and Mars. 

The study introduced a novel criterion for vapor formation based on entropy calculations, revealing that an impact velocity of 7.1 km/s is the minimum required for vapor production in chondritic bodies. The simulations showed that vaporization occurred in up to 89% of impacts during the final stages of planetary accretion, significantly influencing the material properties and volatile content of the forming planets.

This work highlights that vaporization is not restricted to major, catastrophic events such as the Moon-forming impact but is common during smaller-scale impacts. These findings are important for understanding the distribution of volatiles and isotopic compositions in terrestrial planets. The study advocates for incorporating the effects of vaporizing impacts into future models of planetary formation, offering a more comprehensive understanding of early solar system dynamics.

Une proportion significative des impacts lors de l'accrétion planétaire entraîne une vaporisation au moins partielle. Cela a des conséquences importantes sur le budget des volatils des planètes telluriques en formation.

A significant proportion of impacts during planetary accretion leads to partial vaporization. This has substantial consequences for the volatile budget of the accreting terrestrial planets.

Latest news
Subscribe to
Subscribe to "Our Planet"
This MOOC proposed by a team from the Institut de Physique du Globe de Paris is aimed at anyone interested in Earth sciences and wishing to deepen the...
New Publication: Évolution(s). Science, art et littérature — A Unique Contribution from Nobuaki Fuji, Geophysicist at IPGP
New Publication: Évolution(s). Science, art et littérature — A Unique Contribution from Nobuaki Fuji, Geophysicist at IPGP
The book Évolution(s). Science, art et littérature, published in May 2025 by Éditions Matériologiques, brings together contributions from 18 members o...
New insight into the origin of the Moon's depletion of volatile elements
New insight into the origin of the Moon's depletion of volatile elements
The Moon's arid surface, devoid of liquid water and subject to extreme temperature variations, has long intrigued observers. These characteristics ind...
VATMOS-SR: a space mission to understand the origin and evolution of Venus, candidate for the European Space Agency
VATMOS-SR: a space mission to understand the origin and evolution of Venus, candidate for the European Space Agency
Under the leadership of Guillaume Avice CNRS researchers at the Institut de Physique du Globe de Paris (IPGP) and Christophe Sotin (Pr. at Nantes Univ...