Citizen / General public
Researcher
Student / Future student
Company
Public partner
Journalist
Teacher / Pupil

Mars rheology and thermal history revealed by the orbital evolution of its satellite Phobos

Unlike its surface, which we now know relatively well, details of Mars' internal structure and evolution are still poorly understood. Evidence of recent volcanic activity suggests that the deep interior of the Red Planet remains hot and is cooling through convection.

Mars rheology and thermal history revealed by the orbital evolution of its satellite Phobos

Publication date: 23/05/2019

Press, Research

Its cooling rate is linked to its initial thermal state and its rheology, which determines its capacity to deform and evolve dynamically. The study of the thermal evolution of Mars, combined with the available observations, makes it possible to reconstruct its dynamic history and current structure. However, such an approach is limited by the interdependence of several weakly constrained key quantities (such as temperature, composition and rheology).

A team of researchers from the Institut de Physique du Globe de Paris and the Jet Propulsion Laboratory reveal, in an article published in the journal Nature, that it is possible to gain a better understanding of the thermal history and rheology of Mars by considering its closest satellite, Phobos, whose orbital evolution is governed by the thermochemical history of the Red Planet, through tidal interactions.

Mars' closest satellite, Phobos, photographed by the Mars Reconnaissance Orbiter (MRO) spacecraft in 2008 (© NASA).

By exploiting these relationships, the scientists found that Mars was originally slightly warmer than today (100 to 200 K) and that its mantle deformed slowly under the dislocation creep regime. This corresponds to a reference viscosity of 1022.2 ± 0.5 Pa s and an intrinsic viscosity sensitivity to moderate to relatively low temperature (activation energy of 280 ± 80 kJ/mol) and pressure (activation volume <14 cm3/mol). Their approach predicts an average Martian crust thickness of 40 ± 25 km and a surface heat flux of 20 ± 1 mW/m2. Comparison of these predictions with future data could reduce these thermal and rheological uncertainties.

Ref : H. Samuel, P. Lognonné, M. Panning & V. Lainey, The rheology and thermal history of Mars revealed by the orbital evolution of Phobos, Nature 569, 523-527 (2019), doi: 10.1038/s41586-019-1202-7

Latest news
Director position of the Institut de physique du globe de Paris (IPGP)
Director position of the Institut de physique du globe de Paris (IPGP)
The position of Director of the Institut de Physique du Globe de Paris (IPGP) is vacant as of March 24, 2026.
IPGP is now on Twitch!
IPGP is now on Twitch!
Following on from the MOOC Notre Planète (Our Planet), which is still open for enrolment, the Institut de Physique du Globe de Paris is launching its ...
Three ERC advanced grants awarded to the IPGP: new advances in cosmochemistry and planetary sciences
Three ERC advanced grants awarded to the IPGP: new advances in cosmochemistry and planetary sciences
The Institut de physique du globe de Paris (IPGP) has just been awarded three advanced grants from the European Research Council (ERC) for projects le...
Active weather and organic chemistry on Titan: new observations from the James Webb space telescope
Active weather and organic chemistry on Titan: new observations from the James Webb space telescope
The James Webb space telescope (JWST), in collaboration with the ground-based Keck II telescope, has for the first time observed cloud convection in t...