Citizen / General public
Researcher
Student / Future student
Company
Public partner
Journalist
Teacher / Pupil

The evolution of the Earth’s atmosphere studied using impact craters

An international team shows that rocks from the hydrothermal system formed following the impact of the Rochechouart asteroid around 200 million years ago contain traces of the atmosphere of that period in the Earth's history.

The evolution of the Earth’s atmosphere studied using impact craters

Artist's view of an asteroid crashing into Earth © Freepik

Publication date: 25/09/2023

Press, Research

Tracking the evolution of the composition of the Earth’s atmosphere allows following the entire geological history of our planet. However, geological samples that have trapped atmospheric signals are extremely rare.

An international team of researchers led by Guillaume Avice (IPGP-Université Paris Cité, CNRS), in collaboration with the University of Queensland (Australia), the University of Lorraine and the Natural History Museum in Vienna (Austria), shows that rocks from the hydrothermal system formed following the Rochechouart asteroid impact (France) some 200 Ma ago contain traces of the atmosphere from that period of Earth’s history.

Agate nodule (concretion of silica layers) formed by the circulation of fluids in the Rochechouart crater. Red bar = 1 cm. © Avice et al., EPSL 2023
Fluid inclusions contained in the Rochechouart samples. Some contain a liquid phase (liq.) and a gaseous phase in the form of a bubble (vap.). The largest inclusion is twenty micrometres wide. © Avice et al., EPSL 2023

Measurements of the elemental and isotopic composition of noble gases show that the atmospheric signal is essentially pure, and Argon-Argon dating confirms the age of this atmospheric signal.

Impact craters are therefore new targets for understanding the evolution of the Earth’s atmosphere over the long term, bearing in mind that a better knowledge of the past atmosphere is important for understanding future variations, particularly in the case of climate change.

Ref: G. Avice, M.A. Kendrick, A. Richard, L. Ferrière, Ancient atmospheric noble gases preserved in post-impact hydrothermal minerals of the 200 Ma-old Rochechouart impact structure, France, Earth and Planetary Science Letters, Vol. 620, 2023, DOI: 10.1016/j.epsl.2023.118351.

Latest news
Frédéric Girault appointed member of the Institut universitaire de France
Frédéric Girault appointed member of the Institut universitaire de France
The Institut universitaire de France (IUF) aims to promote high-level research in universities and foster interdisciplinarity. Frédéric Girault, an as...
How do planets acquire their water?
How do planets acquire their water?
What if water, that essential ingredient for life, originated at the very heart of planets when they were formed? This is what a new study published i...
IPGP–INGV Workshop – 5 to 7 November 2025
IPGP–INGV Workshop – 5 to 7 November 2025
Three days of discussions to strengthen scientific and technical cooperation between the Institut de Physique du Globe de Paris and the Istituto Nazio...
Catherine Chauvel receives the Léon Lutaud Prize from the Academy of Sciences
Catherine Chauvel receives the Léon Lutaud Prize from the Academy of Sciences
On Tuesday 28 October, Catherine Chauvel, CNRS research director at the Paris Institute of Earth Physics, received the Léon Lutaud Prize from the Acad...