Citizen / General public
Researcher
Student / Future student
Company
Public partner
Journalist
Teacher / Pupil

Zinc isotope anomalies reveal accretion of outer solar system material during Earth formation

The question of the origin of volatile elements* present on Earth is fundamental to understanding the evolution of our planet. A study carried out at IPGP-Université Paris Cité has revealed the first zinc isotope anomalies in different types of meteorites and on Earth.

Zinc isotope anomalies reveal accretion of outer solar system material during Earth formation

© Adobe Stock

Publication date: 28/06/2022

Press, Research

Related themes : Origins

Carbonaceous (CC) meteorites from the outer Solar System and non-carbonaceous (NC) meteorites from the inner Solar System have distinct isotope ratios, a fact known for several refractory elements** but never before observed for a moderately volatile element such as zinc.

While our planet has isotopic ratios of refractory elements similar to some NC meteorites (enstatite chondrites), zinc isotopic ratios fall between NC and CC meteorites. This result reveals that a significant fraction (30%) of terrestrial zinc was captured during the accretion of CC meteorites. As CC meteorites are richer in zinc and other volatile elements than NC meteorites, this implies that the Earth must have accreted 5-6% of its overall mass from CC material, presumably from the outer Solar System.

 

Ref : P.S. Savage, F. Moynier and M. Boyet, Zinc isotope anomalies in primitive meteorites identify the outer solar system as an important source of Earth’s volatile inventory, Icarus (2022), DOI: 10.1016/j.icarus.2022.115172

* Chemical elements associated with a planet’s crust or atmosphere, characterized by low boiling temperatures and therefore easily sublimated (hydrogen, carbon, rare gases, halogens, sulfur).

** Chemical elements with high boiling points (titanium, chromium, calcium, molybdenum).

Latest news
Melting planets reveal the internal history of rocky worlds
Melting planets reveal the internal history of rocky worlds
An international research team, led by scientists from the Institut de Physique du Globe de Paris (IPGP) in collaboration with researchers from Canada...
The oldest trace of a marine sedimentary environment?
The oldest trace of a marine sedimentary environment?
A new study conducted at the IPGP by Zhengyu Long, a PhD student in cosmochemistry, reveals that the Akilia rock in Greenland — over 3.6 billion years...
Soil erosion in mountain environments accelerated by agro-pastoral activities for 3,800 years
Soil erosion in mountain environments accelerated by agro-pastoral activities for 3,800 years
Over the last 3,800 years, agro-pastoral activities have accelerated alpine soil erosion at a pace 4-10 times faster than their natural formation.
Submarine Volcanism: The Case of Mayotte in the Spotlight in Our Next Twitch Live!
Submarine Volcanism: The Case of Mayotte in the Spotlight in Our Next Twitch Live!
After a first live dedicated to space missions and sample returns, and a second exploring the world of deep-sea microorganisms, the IPGP invites you o...